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FOREWORD

The purpose of this bulletin is to present information on one of the last unknown

res of ground water reservoirs: the aquitards. In many underground basins, these

tions, which are of low permeability, serve to separate the aquifer systems into water-

ng layers. Various studies have given hints of the capabilities, limitations, and com-

ties of aquitards, but, heretofore, no definitive study had been made. In recent years,

rowing interest in management of basins, in use of basins as storage and disposal sites,

n establishment of boat marinas that encroach upon coastal basins has made urgent our need

derstand the potentialities of aquitards.

With these thoughts in mind, the Department of Water Resources, using authority vested
under Section 229 of the California Water Code, contracted with the University of California
dertake research into the nature of aquitards. This work was conducted by the Geotechnical
eering Group of the Department of Civil Engineering under the supervision of Dr. Paul A.

rspoon, as principal investigator, and Dr. James K. Mitchell, as co-investigator. It has

d as the project on which three of the University's graduate students have completed their

rates, one has developed a doctoral problem, and a fifth has completed work for his masters

e.

The agreement between the Department and the University, signed in 1967, specified that

nvestigation was to be of those aquitards within a coastal ground water basin. A coastal
was selected because these basins in particular face possible degradation as their fresh

is pumped out and sea water is drawn in. A number of artificial barriers have been tried

alting this trend, with varying degrees of success. But, investigators have suspected,

atural barriers— the aquitards—might be used if their characteristics were fully understood.

The Oxnard Plain of Ventura County seemed almost tailor-made for this research: its

d water basin consists of a number of layers of aquifers separated by aquitards, the upper
er is known to be intruded by sea water, and the basin as a whole has been extensively
ed in recent years.

The first indication of trouble in the aquifers of the Oxnard Plain came in the 1930 's

water levels in the topmost aquifer were found to have declined to about 5 feet above sea

in most of the basin and to below sea level in the vicinity of Port Hueneme. At that

sea-water intrusion was detected as nuch as a half mile inland. A wet period of approximately
ars brought a recovery of water level elevations and a temporary halt to the sea-water in-

on. But, by 1945, water levels were once again declining and, by 1949, they were as much

feet below sea level. Since then, the front of the intruding sea water has moved further

d. By 1966, almost 6,100 acres were known to be underlain by water containing high
ides, which are regarded as indicators of the presence of sea water.

Meantime, the Department of Water Resources had undertaken a study of the extent of the

sion and of underground conditions; from this study came recommendations for measures that

be taken to stem the intrusion. As a result, the State Legislature in 1965 appropriated
000 to construct and operate an experimental extraction-type barrier to attempt to control
ntrusion. A 2-year test proved the barrier is technically feasible, but it pointed up the

for additional study of underground conditions in the Oxnard Plain before a full-scale
er is constructed.

An important phase of this additional study, which is reported in this bulletin, is

rned with the aquitards. However, it has not only added to our understanding of conditions

n the Oxnard Basin, but it has also contributed materially to our knowledge of the nature

haracter of ground water basins in general.

IVilliatr. H, GLaneLli, Dirci^t-ov

Department ot" '.7atf;r Resources
The Resources Ar;f?ncy

State of California
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ABSTRACT

This report gives the results of a comprehensive program of investigation on aquitards , i.e., the fine-grained sediment
that act as confining layers in ground water systems. Since little Is known about the hydraulic properties of aquitard mater-
ials or methods for their investigation, a three-year program of research was set up under the joint sponsorship of the State c

California, Department of Water Resources and the University of California. Berkeley, with the Oxnard Coastal Plain of Ventura
County as a focal point. The overall objective was to develop a better understanding of aquitards in the coastal ground water
basins of California and particularly their relationship to sea water intrusion.

Field, laboratory and theoretical analyses have helped to define the important role that aquitards play in controlling
ground water movement in the Oxnard Basin. Contrary to the usual concept that aquitards are effective confining beds, the re-
sults of this work show that, at least in the Oxnard test area near Port Hueneme, these beds have a small but significant
permeability. This basin is clearly a system of leaky aquifers. This was proven by a series of pumping tests and a new methoc
of analyzing the field data. To support this method, a more complete theory than has heretofore been available for transient
flow in leaky aquifers was developed. This new theory was used to support the "ratio" method of evaluating hydraulic propertie
of aquitards.

Using the ratio method, the aquitard overlying the Oxnard aquifer was found to have an average permeability of 0,025
gpd/f t'^

; the aquitard underlying is somewhat more permeable, 0.042 gpd/ft . By contrast the permeability of the aquifer is

1,405 gpd/ft . The aquitard overlying the Oxnard aquifer has a specific storage coefficient of 2 .A x 10" ft" ; the aquitard
underlying is somewhat less, 1.0 x 10"** ft~^. These results, however are about a hundred times larger Chan the storage value
obtained for the aquifer, 1.2 x 10"^ ft"'.

An independent evaluation of aquitard materials in the Oxnard Basin was also made through laboratory studies on core
samples. Selected samples were studied with regard to composition, consolidation, permeability, and effects of replacing the
natural pore fluids by salt water. The aquitard sediments are predominantly in the silt size and are mainly composed of quarts
and clay minerals. The clay content is generally less than 20 percent and is dominantly montmorillonite with lesser amounts
of kaolinite and illite. Permeabilities vary erratically depending on grain size and range from 0.1 to less than 0.001 gpd/ft^
Leaching the clay-rich fractions of these core samples with salt water having a NaCl concentration equal to that of sea water
did not seem to have any significant effects on permeability.

A second theoretical study was also carried out on the mechanism and effects of chemico-osmotic diffusion. This study
shows that when an aquitard is low in permeability because of a significant clay content (i.e. "0.001 gpd/ft^), diffusion be-
comes an important mechanism for moving salt ions through such beds. Whether such movement can cause degradation of fresh
water layers will depend on the thickness of the aquitard and the presence of any hydraulic gradients that may have developed.
However, if a coastal basin has aquitard permeabilities as high or higher than those found at Oxnard, the process most likely
to cause significant amounts of non-potable waters to move across such aquitards will probably be that of convective movement
due to a hydraulic gradient.

The implications of this work with regard to sea water intrusion, development of marinas, accumulation of poor quality
waters in semiperched zones, ground water recharge, and rate of migration through aquitard layers are reviewed. All of these
considerations lead to the more general problem of the level of field observation that is necessary in multiple aquifer systems
where leakage across aquitards poses a threat to ground water resources. This will require further field and laboratory work
similar to that of this investigation plus appropriate measurements of the hydraulic heads that can develop across aquitards.

It Is concluded that in utilizing the ground water resources of coastal basins, such as those of California, the abilit
of aquitards to control water intrusion on the one hand, and to contribute to recharge on the other, must be carefully evaluate
in any effective program of water resource management.



CHAPTER I. INTRODUCTION

P. A. Mitherspoon

A. OBJECTIVES

The overall objective of this investigation is to develop a better understanding

of the role of aquitards in the coastal ground water basins of California and partic-

ularly their relationship to sea water intrusion.

Since little is known about the hydraulic properties of aquitard materials or

methods for their investigation, a comprehensive three-year program of research was

set up under the joint sponsorship of the State of California, Department of Water

Resources and the University of California, Berkeley, with the Oxnard Coastal Plain of

Ventura County as a focal point. A general location map is shown in Figure I-l.

This research program had the following specific objectives:

(1) to develop improved field methods of evaluating hydraulic properties of

aquitards

(2) to investigate the physical and hydraulic properties of aquitard materials

in the laboratory

(3) to Investigate the theory of flow in multiple aquifer systems

(4) to investigate the theory of coupled flow of salt and water ions in clay

layers

B. IMPORTANCE OF AQUITARDS IN GROUND WATER MOVEMENT

1 . Problems with Sea Water Instrusion

Traditionally, ground water geologists as well as hydrologists have tended to

focus their attention on the more permeable layers of a ground water basin in developing

water supplies. Obviously they need to locate the best aquifer conditions to provide

wells that would be adequate for the long range needs of the consumer.

In the coastal ground water basins of California, there generally have been no

serious problems in finding water. These basins usually contain thick deposits of

highly productive sands and gravels that have been deposited as multiple-aquifer

systems. Such systems, contain a series of aquifers that are separated by aquitards,

i.e., confining layers of relatively low permeability clays and silts.

-1-



Fit;. I-l. Location map
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The problem in managing these coastal basins has been more that of determining

the appropriate rate at which to produce water. Years ago when consumptive use of

water was limited, demands were easily met. But as population and agricultural centers

began to grow rapidly in the coastal areas of California, the water requirements in-

creased enormously. For a time, these increasing needs could be met by simply drilling

and equipping more wells. What was apparently not realized, however, was that the

coastal aquifers were connected with the ocean by outcrops out on the continental

shelf. Thus, one need only develop a sufficient hydraulic gradient landward and sea

water inevitably invaded those coastal areas wherever excessive pumpage persisted.

Sea water intrusion in California has been well documented. The following is

only a partial list of the reports that have been published by the State of California,

Department of Water Resources:

(1) "Investigation of Ground Water Pollution of Bolsa Chica Mesa-Sunset
Beach, California," Office Report, January 1958;

(2) "Sea-Water Intrusion in California," Bulletin No. 63, November 1958;

(3) "Quality of Ground Waters in California, 1955 through 1959," Bulletins
Nos. 66-55 through 66-59, June 1958 through February 1963;

(4) "Intrusion of Salt Water into Ground Water Basins of Southern Alameda
County," Bulletin No. 81, December 1960;

(5) "Sea-Water Intrusion, Oxnard Plain of Ventura County," Bulletin No. 63-1,
October 1965;

(6) "Sea-Water Intrusion, Bolsa-Sunset Area Orange County ," Bulletin 63-2,
January 1968;

(7) "Sea-Water Intrusion, Pismo-Guadalupe Area," Bulletin No. 63-3, February
1970; and

(8) "Sea-Water Intrusion Lower Salinas Valley, Progress Report 1968-1969,"
June 1970.

Solutions to the disastrous effects of degradation by sea water have not been easy.

Where shallow aquifers were developed as the first source of supply and brine concen-

trations became intolerable, the simplest solution has been to drill to deeper unaffected

layers of fresh water. In other cases, the innovation of a hydraulic or dynamic barrier

to prevent landward migration of sea water has been used, as in the case of the Los

Angeles County Flood Control District [Bruington and Seares, 1965].

In employing these solutions, however, the role of the aquitards has largely

been overlooked. For example, when the withdrawal of water is stopped from a degraded

aquifer and simply started again in another aquifer beneath, a hydraulic gradient from

the Intruded toward the unintruded layer quickly develops. Since the permeability of

the intervening aquitard is almost always unknown, how can one determine the rate at

which sea water from a degraded zone may migrate vertically downward to an uninvaded

zone? Such migration might take place long before horizontal intrusion by sea water

from the relatively more distant outcrops out on the shelf could occur.

-3-



Another situation where the role of the aquitards in preventing sea water

intrusion is largely unknown concerns the increasing development of marinas. Not

only has an increasing population in California placed greater and greater demands

on ground water resources, but the trend toward water sports has required the develop-

ment of more and more shallow harbors for sea craft. The construction of such marinas

requires the removal of some of the aquitard layers that normally have provided a

natural barrier between the ocean and the fresh water aquifers beneath.

If the hydraulic head in such aquifers is reduced below sea level through

local pumping, the same problem can develop of a gradient that moves sea water toward

sources of fresh water. Thus, the question arises, how much of an aquitard layer can

safely be removed during the construction of a marina? An accurate knowledge of

aquitard properties is needed to have a reliable answer.

The above discussion has focussed on the movement of brine through aquitards

under the influence of an hydraulic gradient, but it is also possible for salt ions

to move through porous media by diffusion. In the presence of clay minerals, the

coupled action of both hydraulic and chemical gradients must be considered to under-

stand this migration. In those situations where one aquifer of a multiple-aquifer

system has been intruded by sea water, there might not be any hydraulic gradient

across an aquitard layer that confines the degraded zone, yet migration of salt ions

toward fresh water would still occur. How rapidly can such migration take place, and

just exactly what role does the aquitard play in this kind of mass transfer?

Problems of sea water intrusion are intimately concerned with the ability of

aquitard materials to control migration, but the importance of these fine-grained

sediments in controlling such phenomena is not well understood.

2. Problems with Regional Recharge and Subsidence

In developing a comprehensive program of management for a given basin, one

should have a water budget that is applicable to the area under consideration. Such

budgets require estimates of the magnitude of ground water recharge as well as overall

use. Although such recharge is normally believed to take place in areas of aquifer

outcrops, there is increasing evidence that the aquitards also play an important role.

Gill [1969] has recently reported that substantial amounts of water being produced

from the Potomac-Raritan-Mogothy aquifer system is coming through the aquitards within

the system. Walton [1965] has also shown earlier how the Maquoketa Formation in

Illinois, which is essentially a shale bed, serves as an effective transmitter of

water between aquifers.

Furthermore, the contribution from storage in aquitards may far exceed that of

the coarser grained sediments that make up the aquifers. As will be shown from the



results of both field and laboratory testing in the discussion that follows, the co-

efficient of storage per foot of thickness (S ) for the aquitards in the Oxnard basin

is roughly two hundred times greater than that of the aquifers. Under such conditions,

the local contribution of water from storage in the aquitards can be quite significant.

The time for this phenomena to take place depends on the permeability of the fine-

grained sediment, but this is another important aspect of the role of aquitards in

multiple-aquifer systems.

At the same time that the aquitards give up some of their stored water, they

also undergo another closely related phenomenon. The loss of water results in reduced

pore pressures, which allows the structure of the fine-grained sediments to collapse

to some degree. This collapse can lead to land subsidence that is practically

irreversible. Poland and Davis [1969] have gathered a wealth of information on the

relationship between land subsidence and water withdrawal from multiple-aquifer

systems. Anyone attempting to predict such effects must understand the behavior of

aquitard materials under the influence of pumping.

3. Problems with Underground Storage and Waste Disposal

For the past twenty years, aquifers at depths below 500 feet have been used

for storing natural gas in the United States. One of the critical questions in such

storage operations is the tightness of the aquitards that lie above these storage

reservoirs. In this case, the main problem is that of determining the permeability

of the aquitard layers, and it has been necessary to develop field methods to solve

this problem [witherspoon, et al. 1967]. Where the properties of the aquitards were

not properly investigated, the gas industry has on occasion been witness to spectacular

(and dangerous) effects of gas leakage.

It is also possible to store other kinds of fluids or to dispose of waste

products underground provided such action does not lead to pollution of potable supplies

of water. Proper protection of water resources requires that we understand the role of

aquitards in these situations and develop reliable methods of testing the ability of the

fine-grained sediments to act as barriers to migration.

4. Problems in Analyzing Pumping Tests

In analyzing results of water pumping tests, the well known Theis solution is

customarily used to determine permeability and specific storage of the aquifer under

investigation. As long as the aquitards do not leak significant amounts of water into

the aquifer, this method of analysis produces reliable results.
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However, groundwater hydrologists noted many years ago that deviations from

the aquifer behavior as predicted by the Theis solution were not uncommon. Some of

these deviations were caused by water leaking out of the confining beds, and this has

led to the "leaky aquifer" theory of Hantush and Jacob [1955b]. This theory and its

later modifications [Hantush, 1960a] relied only on an examination of aquifer behavior

and attempted to relate such behavior to the properties of the adjacent aquitards.

Unfortunately, this theory has not been entirely satisfactory. When the

degree of leakage is small, the method gives reliable results, but as leakage increases,

certain errors are introduced. The errors are such that one tends to overestimate the

permeability of the aquifer and underestimate the permeability of the confining beds.

Furthermore, the theory does not provide a means of distinguishing whether the leaking

beds lie above or below the aquifer being pumped. One tends to underestimate the

importance of leakage and cannot identify the source completely. Here again, the role

of aquitards in multiple aquifer systems must be understood if a reliable evaluation

of the hydraulic properties of these fine-grained sediments is desired.
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CHAPTER II. SUMMARY

P. A. Witherspoon and J. K. Mitchell

A. REVIEW OF RESULTS

Field, laboratory and theoretical analyses have helped to define the important

role that aquitards play in controlling ground water movement in the Oxnard coastal basin.

These studies have led to several important findings. Contrary to the usual concept that

aquitards are effective confining beds, our results show that, at least in the Oxnard test

area near Port Hueneme, these beds have a significant permeability. This basin is clearly

a system of leaky aquifers.

This was proven by a series of pumping tests and a new method of analyzing the

field data. To support this method, a more complete theory than has heretofore been

available for transient flow in leaky aquifers was developed. This theory is summarized

in Chapter IV and the details are presented in Appendix A. This new theory was used to

support the "ratio" method of evaluating hydraulic properties of aquitards.

1 . Ratio Method of Analyzing Field Data

The ratio method relies upon measurements of drawdown in the aquitard while water

is being pumped from an adjacent aquifer above or below. At any given time, drawdown at

a known point in the aquitard, s', divided by drawdown in the adjacent aquifer, s, at the

same radial distance from the pumping well provides the key factor, s'/s. This ratio has

been shown from theory to be dependent on the permeability of the aquitard, K' , and on the

coefficient of storage per unit thickness of aquitard, S '. The specific relationship is

shown by a family of curves on Figure IV-16. Examples of the application of the method to

field data from this investigation are presented in Chapter V.

The ratio method has a distinct advantage over procedures that have been used in

the past. By making measurements in the aquitard above or below an aquifer that is being

pumped and comparing the effects in the aquitard with those in the aquifer, a simple and

direct procedure for calculating hydraulic properties can be used. There is no ambiguity

as to which aquitard is leaking. Previous methods relied only on measurements in the

aquifer being pumped, and therefore, the megnitude of leakage from above or from below

could not be ascertained. The ratio method eliminates this difficulty.
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2. Field Pumping Tests

The ratio method was tested in this investigation by analyzing data obtained while

pumping water from the Oxnard aquifer and simultaneously recording the transient response

in the aquitards immediately above and below. The results are quite significant. The
2

aquitard overlying the Oxnard aquifer has an average permeability of 0.025 gpd/ft (1.1 x
— ft 2

10 cm/sec), and the aquitard underlying is somewhat more permeable, 0.042 gpd/ft (1.9 x
— fi 1

10 cm/sec). By contrast the permeability of the aquifer in the test area is 1,405 gpd/ft
-2

(6.4 X 10 cm/sec)

.

Results for the storage factors are also significant. The aquitard overlying the
-4 -1

Oxnard aquifer has a specific storage coefficient, S ' , of 2.4 x 10 ft , and the aquitard
-4 -1 ^

underlying is somewhat less, 1.0 x 10 ft . These results, however, are about a hundred

times larger than the value obtained for the aquifer, 1.2 x 10 ft

3. Laboratory Studies

An independent evaluation of the aquitard materials in the Oxnard Basin was also

made during this investigation through laboratory studies on core samples. In the drilling

operations, about 40 feet of core were taken from the aquitard overlying the Oxnard aquifer

and about 30 feet, from the underlying aquitard. Selected samples were studied with re-

gard to composition, consolidation, permeability, and the effects of replacing the natural

pore fluids by salt water. The results are presented in Chapter VI.

The sediments throughout these aquitard layers are predominantly in the silt size

and are mainly composed of quartz and clay minerals. The clay content is generally less

than 20 percent and is dominantly montmorillonite with lesser amounts of kaolinite and

illite. The aquitard beneath the Oxnard, however, has a much higher proportion of sand

than the aquitard above. In general, these fine-grained sediments are moderately com-

pressible, with compression index values ranging from 0.2 to 0.6.

Permeabilities as measured in the laboratory vary erratically with depth depending
2 -5 -7

on grain size and range from 0.1 to less than 0.001 gpd/ft (10 to 10 cm/sec). The

laboratory results are generally in agreement with the results of the pumping tests, al-

though many of the measured values are lower than was obtained in the field. This

resulted from restricting the experimental work to clay-rich samples since these can be

more reliably tested in the laboratory than samples containing too much sand. Leaching

these clay-rich samples with salt water having a NaCl concentration equal to that of sea

water did not seem to have any significant effects, although the results were inconclusive

because of the aquitard variability.



4. Analysis of Chemi co-Osmotic Diffusion

A second theoretical study was also carried out during this investigation on the

mechanism and effects of chemico-osmotic diffusion. When sea water is on one side of an

aquitard and fresh water in on the other, salt ions will tend to move toward the fresh

»ater. This movement, however, is complex and depends on a number of factors. The re-

sults of a theoretical analysis for some assumed situations at Oxnard are presented in

"hapter VII, and the details of the theory of chemico-osmotic diffusion are given in

^ppendix D.

These theoretical studies show that when an aquitard is low in hydraulic permeability
2 -7

jecause of a significant clay content (i.e. ~0.001 gpd/ft or ~10 cm/sec), diffusion be-

comes an important mechanism for moving salt ions through such beds. Whether such movement

:an cause degradation of fresh water layers will depend on the thickness of the aquitard

and the presence of any hydraulic gradients that may have developed. A discussion of this

jrocess as well as movement under the influence of a hydraulic gradient alone is presented

Ln Chapter VIII.

3. IMPLICATIONS OF RESULTS

The importance of aquitards in controlling ground water movement has been discussed

Ln Chapter I in terms of a number of problems that face the hydrogeologis t as well as hydro-

Logist. In view of the results of this investigation, what are the implications of our

findings with regard to the role of aquitards in ground water systems?

1. Sea Water Intrusion

Clearly, the aquitards of the Oxnard coastal basin have sufficient permeability

:hat they cannot be considered confining beds in the usual sense. If the permeability

:hat was obtained in this study (~0.02 gpd/ft or ~10 cm/sec) is typical of the basin,

I substantial vertical migration of water from one aquifer to another is possible. For

ixample, a gradient of 1 ft/ft can move 560,000 gpd vertically across an aquitard with

:his permeability over an area of one square mile.

Furthermore, if one of the shallow aquifers has been degraded by sea water intru-

sion, as is the case at Oxnard, pumpage from a second lower aquifer can lead to intrusion

.nto this lower level. l>Jhether such intrusion will lead to a significant degradation of

•otable waters will depend on the circumstances. This is a potential problem that cannot

le ignored in coastal basins already subject to sea water intrusion.

Such migration also raises the question whether the initial intrusion in a coastal

-9-



aquifer is necessarily horizontal. If a sufficient vertical gradient develops offshore

across an aquitard separating ocean waters from a fresh water aquifer that extends onshore

the same argument can be made that the aquitard may provide a potential path for migration

to occur. Sea water would not have to move inland solely from an outcrop out on the con-

tinental shelf for intrusion to take place. Here again is a potential problem that cannot

be ignored when plans are being made to produce significant supplies of water from a

coastal basin.

2. Marinas

A comparable problem arises on a smaller scale when a marina is constructed in a

coastal basin. The excavation of a harbor removes some portion of the aquitard layers

that serve as a natural barrier between salt and fresh waters. If, in addition, the per-

meability of the aquitard is of the same order as that found at Oxnard, a reduction of hei

in a fresh water aquifer lying beneath the marina can lead to vertical migration of marine

waters into the fresh water system.

For example, if the marina covers an area of 100 acres, a vertical gradient of 1

ft/ft can move 87,000 gpd of sea water across an aquitard when the permeability is 0.02

2
gpd/ft . Whether this constitutes a problem will depend on the magnitude of dilution

that takes place once the salt water reaches the fresh water aquifer. This, of course,

depends on the hydraulic conditions that control movement within the fresh water system.

Obviously, migration of this kind is much more localized, and thus, only wells that pro-

duce in the near vicinity of the marina are in potential danger of intrusion by sea

water.

3. Poor Quality Water

Still another implication of this study concerns the problem of degradation from

poor quality waters that accumulate for one reason or another in semlperched aquifers cvei

lying fresh water systems. This can be especially critical if dangerous constituents sucl

as arsenic, boron, or nitrate happen to accumulate in abnormally high concentrations in tt

'shallow waters. Since the hydraulic head in the semiperched zones will usually exceed thi

of the fresh water aquifers beneath, the prevailing direction of movement will be downwarc

If the results found at Oxnard are typical, one can easily demonstrate that a small down-

ward movement of shallow water containing a concentration of undesirable elements that is

10 or more times the acceptable limit for potable water can lead to a serious problem (se<

Chapter VIII).
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4. Ground Water Recharge

Although the above discussion has focussed on the difficulties that arise from

Leaky aquitards, such beds also provide important paths for ground water recharge. For

jxample, if the vertical gradient across the aquitard overlying the Oxnard aquifer is only
2

).l ft/ft and the permeability is 0.02 gpd/ft , the volume of vertical recharge per square

nile of aquifer amounts to 56,000 gpd, or about 63 acre-feet per year. Spread over the

)5 sauare miles of the Oxnard Basin, this inflow would amount to 6,000 acre-feet per year,

7hich is about 13 percent of the reported ground water supply for the area (46,000 acre-

:eet per year). Thus, leakage through this aquitard could be a significant source of

recharge to the basin.

Another source of water can come from storage in the aquitard layers. This is due

:o the fact that S , the coefficient of storage per foot of thickness, is generally much

ligher in fine grained sediments than in the coarse grained aquifers. As mentioned above

In connection with the pumping tests, S for the Oxnard aquifer was found to be 1.2 x 10
-1

^
-4 -1

:t , whereas in the overlying aquitard, S was determined to be 2.4 x 10 ft , or 200

:imes higher.

Drawdovms in the aquifer will always be greater than those in the aquitard, but it

Ls obvious that a factor of 200 will more than offset such differences in terms of water

release. This is not an important factor in the Oxnard Basin because hydraulic heads do

lot continue to fall year after year but fluctuate depending on the relative magnitudes

)f annual withdrawal and ground water recharge. In multiple-aquifer systems, however,

/here the withdrawals continually exceed the basin recharge and the total thickness of

;he aquitards far exceeds that of the aquifers, the contributions from storage in the

line grained sediments can be quite significant. Those who prepare hydraulic budgets

ihould not overlook the role of aquitards either from the standpoint of their storage

capacity or from the standpoint of the communication they provide with other parts of a

lultiple aquifer system.

5. Time Factor

In all of the above considerations, one must keep the time factor in mind. In

2
)ther words, if the permeability of a key aquitard is of the order of 0.02 gpd/ft , how

Long will it take for sea water or some other non-potable fluid to move across such a

)ed? The answer depends on the magnitude of the hydraulic gradient that is maintained

md the thickness of aquitard to be traversed.

If the vertical gradient is as high as 1 ft/ft, the velocity through an aquitard
2

?ith a permeability of 0.02 gpd/ft will be one foot per year. Thus, if the aquitards

range in thickness from 10 to 50 feet, sea water could pass through them in from 10 to
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50 years. On the other hand, If the vertical gradient is only one tenth as high (i.e.

0.1 ft/ft), the time factor would be increased ten times.

A period of 10 to 50 years is relatively short and happens to coincide with the

time periods over which the various sea water intrusion problems in the coastal basins

of California have occurred. One wonders whether the observed degradation has always

followed the traditional concept of horizontal movement from the aquifer outcrops out

on the continental shelf, or whether there might be some instances where aquitard leakage

was a contributing factor. This could probably be checked by investigating compositional

changes in the pore waters of offshore aquitards in those coastal basins where intrusion

has occurred.

The picture changes considerably if the permeability is reduced by a factor of ten

2 -7
(i.e. to 0.002 gpd/ft or 10 cm/sec). A decreased permeability implies a higher clay

content and with it, the greater likelihood that chemico-osmotic diffusion must be con-

sidered. This kind of coupled flow is a non-steady process and is quite complicated.

Details are given in Chapter VII where examples have been worked out for an aquitard
2

having a permeability of 0.002 gpd/ft .

Movement of salt ions takes place by diffusion in such an aquitard whether a

hydraulic gradient due to pumping is present or not. The rate of movement, however, is

very slow; our theoretical studies show that salt ions will take about 800 years to move

across an aquitard that is 30 ft thick. If, in addition, a hydraulic gradient of 1 ft/ft

is also acting in the same direction as the diffusive movement, the time will be reduced

appreciably to 170 years. Because this kind of movement is non-steady, the time factor

decreases with the square of the thickness of the aquitard. Thus, if thickness in the

above example is reduced to 10 ft, the above time factors are reduced to 80 and 19 years,

resnectively

.

In summary, if a coastal basin has aquitard permeabilities as high or higher than

those found at Oxnard, the process most likely to cause significant amounts of non-potable

waters to move across such aquitards will probably be that of movement due to a hydraulic

gradient. As the aquitards become clay-rich and their permeabilities fall to levels of

2
the order of 0.001 gpd/ft , the migration will be controlled by chemico-osmotic diffusion.

In this case, the only danger points will be those locations where the aquitards that must

serve as barriers to movement are too thin. In either circumstance, careful control of

hydrologic conditions must be maintained if sea water intrusion is to be eliminated.

6. Need for Field Observations

All of these considerations lead to the more general problem of the level of field

observation that is necessary in multiple aquifer systems where leakage across aquitards

noses a threat to ground water resources. Obviously, one must first know the magnitude
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)f the aquitard permeability; otherwise reliable estimates of leakage through such beds

;ill not be possible. This will require further field and laboratory work similar to that

)f this investigation. As the range of permeabilities for aquitards becomes better known,

iseful correlations can probably be developed that will provide a means of predicting

reliable values for permeability.

Once the permeabilities are established, appropriate measurements of hydraulic

lead across the aquitard under consideration will provide the data needed to estimate

;he rate of movement through such a bed. Locations where critical problems of fresh

rater degradation may occur should be equipped with enough observation wells so there

:an be no question concerning the magnitude of vertical communication. These wells should

le placed in the aquitard under consideration as well as in adjacent aquifers above and

lelow.

. CONCLUSIONS

(1) The Oxnard coastal basin is clearly a multiple system of leaky aquifers.

(2) The ratio method described in this report provides a new field procedure for

evaluating hydraulic properties of aquitards.

(3) A theory of transient flow in multiple aquifers systems has been developed that

provides a scientific basis for the ratio method.

(4) A theory of chemico-osmotic diffusion through aquitard layers has been developed

that provides an understanding of the controlling factors in this complex process.

(5) Movement of salt water through aquitards by chemico-osmotic diffusion becomes
2

important when the permeability falls to levels of the order of 0.001 gpd/ft

(~10 cm/sec)

.

(6) At higher permeabilities, movement through aquitards is largely controlled by the

hydraulic gradients that result when water is being pumped from adjacent aquifers.

(7) Leakage through the aquitards of coastal basins is an important consideration in

several facets of the general problem of degradation of fresh water systems.

(8) Those who prepare hydraulic budgets should not overlook the contributions to

ground water recharge that can come from the aquitards.

(9) Aquitards play a far more important role in controlling ground water movement than

has heretofore been realized.

. RECOMMENDATIONS

(1) Further investigations on aquitards are needed so that the range in the hydraulic

properties of these fine-grained sediments can be better established.

(2) The traditional concept of a horizontal intrusion of sea water into fresh water
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aquifers needs to be re-examined to determine if aquitard leakage may also be a

contributing factor.

(3) In utilizing the ground water resources of coastal basins, such as those of

California, the ability of aquitards to control sea water intrusion on the one

hand, and to contribute to recharge on the other, should be carefully evaluated

in any effective program of water resource management.
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CHAPTER III. OXNARD BASIN

P. A. Witherspoon

To understand the hydraulic system of the Oxnard Basin requires a knowledge of

the relationships between the various geologic units and their aquifers and aquitards.

This chapter presents information on these relationships and on the recharge and with-

drawal of ground water and the status of sea water intrusion.

A. GEOLOGIC SETTING

During the Tertiary and Quarternary time, several thousand feet of sediments

were laid down on a pre-Cretaceous basement of igneous and metamorphic rocks. Of

these sediments, only the Quaternary deposits are imnortant as a source of ground

water, and only they will be discussed in this chapter. A generalized geologic column

is given in Figure IIl-l.

AGE

1-9

GEOLOGIC UNIT

(RECENT DEPOSITS)

(UPPER
PLEISTOCENE
DEPOSITS)

SAN PEDRO
FORMATION
(LOWER

PLEISTOCENE
DEPOSITS)

SANTA BARBARA
rORMATJON
(LOWER

PLEISTOCENE
DEPOSITS)

MAXIMUM
THICKNESS

UN fE£T)

GENERAL LITHOLOGY
AND WATER-BEARING CHARACTER OF SEDIMENTS

VITN FINE-TO HEDIUM-GRAWED SAND LENSES CONFINING MEMBER ABOVE

FINE- TO COARSE-GflAINED SANO WITH GftOVEL VARYING FROM GRANULE TQ COBBLE 9* SIZE

MTERBEDDEO SILT AND CLAT LENSES.»«CH PERkCABlLlTY PRiNCIFttL PRODUCING AOIAFER IN

OXNARO BASIN SUBJECT TO SEA-WATER INTRUSION

SILT AND CLAY

FINE- TO COARSE-GRAHED SANO WITH GRANULES INTERBEDOEO SN.T AND CLAY LENSES.
HIGN PERMEABILITY LOCALLY OCVELOPED BY WELLS IN OXNARO BASIN SUBJECT TO
SEA-WATER INTRUSION

SILT Ate CLm

F«E- TO COARSE-GRAINED SANO WiTm SilT AND CL.AT LENSES. MODERATE TO HtGM

PER»CAB«.ITY DEVELOPED BY FEW WELLS IN OXNARD BASIN MAT BE SUBJECT TO
SCA-WATER INTRUSION

SILT AND CLAY

FINE-TO COARSE -GRANEO SAW WiTm GRAVEL STRINGERS INTERBEDOEO SILT AND
CLAT MODERATE PERMEABILITY OCvElOPEO BY FEW WELLS IN OXNARO BAS»* MA'

BE SUBJECT TO SEA- water INTRUSION

SILT AW CL«T

FINE-TO COARSE -GRAINCO SANO WITH GRAVEL iNTEf^EDOED SILT AND CLAY
PROBABLE MODERATE PERMEABILITY DEVELOPED BY FEW WELLS M OXNARD
BASn MAY BE SUBJECT TO SEA- WATER INTRUSION

Fig. III-l. Generalized geologic column of water
bearing sediments in Oxnard Basin

acnumecT or water Rcsoutccs. soutfcrm otsTwicT.ign
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Recent Deposits

Recent deposits in the coastal plain were laid down during the post-glacial

period, while the sea level was rising. The sediments consist of alluvial sands and

gravels, lagoonal silts and clays, and dune sands. These deposits make up the Oxnard

aquifer, the confining cap, and the semiperched zone. Maximum thicknesses in the

Oxnard Basin for these zones are 160 feet, 150 feet, and 80 feet, respectively. The

Recent deposits lie unconformably on the late Pleistocene deposits.

Late Pleistocene Deposits

The late Pleistocene deposits consist of interbedded sands, gravels, silts,

and clays. They make up an aquitard that separates the Oxnard aquifer from the Mugu

aquifer, and Mugu aquifer itself, and also a lower aquitard that separates the Mugu

aquifer from the lower Pleistocene deposits. Maximum thicknesses in the Oxnard Basin

are 150 feet for the upper aquitard, 250 feet for the Mugu aquifer, and 80 feet for

the lower aquitard. In the forebay area, the Oxnard and Mugu aquifers merge. The

upper Pleistocene deposits unconformably overlie the lower Pleistocene sediments.

Early Pleistocene Deposits

Although early Pleistocene deposits were not encountered during the drilling

for this project, they are described here to complete the stratigraphy of the water-

bearing sediments in Oxnard Basin.

Two formations form the lower Pleistocene deposits in Oxnard Basin. They are

the San Pedro Foinnation, which conformably overlies the Santa Barbara Formation.

The San Pedro Formation comprises marine and continental deposits of sand,

gravel, silt, and clay. Two water-bearing zones have been designated within this

formation. They are the Hueneme and Fox Canyon aquifers. The Hueneme , which is the

uppermost of the two, is separated from the Fox Canyon by an aquitard of silt and clay.

Maximum thickness for the Hueneme aquifer is 300 feet, for the aquitard immediately

below it, 170 feet, and for the Fox Canyon aquifer, 550 feet.

The Santa Barbara Formation is chiefly composed of marine clay, silt, sand, and

gravel, and attains a maximum thickness of more than 1,500 feet in Oxnard Basin. The

permeable sands and coarse gravels in the uppermost part of this formation have been

termed the Grimes Canyon aquifer. This aquifer is separated from the Fox Canyon aquifer

by a silt and clay aquitard that attains a maximum thickness of about 40 feet.
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B. MULTIPLE AQUIFER SYSTEM

The water-bearing sediments in the Oxnard Basin are, in downward sequence:

the semiperched zone, the Oxnard aquifer, the Mugu aquifer, the Hueneme aquifer, the

Fox Canyon aquifer, and the Grimes Canyon aquifer. Following is a brief discussion

of these water-bearing units and their associated aquitards. Although emphasis is

placed on the upper aquifers, the three lower ones will be discussed to complete the

aquifer system-

Semiperched Zone

The semiperched zone is the uppermost water-bearing unit in the test area. It

is composed of fine to medium-grained sand with interbedded silty clay lenses. In the

study area, the average thickness is about 30 feet. Immediately below the semiperched

zone and overlying the Oxnard aquifer is the confining, or clay cap. It is made up of

predominately silty and sandy clays. Within the test area, the cap has an average

thickness of approximately 35 feet.

Oxnard Aquifer

The Oxnard aquifer, which is the most Important water producer in the Oxnard

Basin, is composed of fine to coarse-grained sand and gravel. Within the study area

the average thickness is about 90 feet. The aquifer exhibits high permeabilities of

2
between 1,200 and 1,300 gallons per day per square foot (gpd/ft ). Within the study

area, lithologic and electric logs of the pumping and observations wells show the

aquifer to be a single unit, with no prominent silt or clay lense interruptions.

Immediately below the Oxnard aquifer and separating it from the Mugu aquifer is

an aquitard that is composed of silty clay with some interbedded sandy clay lenses. The

average thickness of this aquitard in the test area is approximately 30 feet.

Mugu Aquifer

The material that forms the Mugu aquifer is fine to coarse-grained sand and

gravel with some interbedded silty clay. Within the study area, the average thickness

of this water-bearing zone is approximately 110 feet. Although no test was made for

permeability in this study, permeabilities in other parts of Oxnard Basin are rather
2high with the range between 1,900 and 2,200 gpd/ft .

In the forebay area (see Figure I-l for location) , the Mugu aquifer merges with

the Oxnard aquifer. It is probably in hydraulic continuity with the ocean, although in
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the immediate vicinity of the study area no evidence could be found of sea water moving

laterally within this zone.

Underlying the Mugu is an aquitard composed of silty clay. In the study area,

the thickness is not known, but within the Oxnard Basin it reaches a maximum of 80 feet.

This aquitard is continuous except in the forebay area, where the Hueneme aquifer merges

with the other water-bearing zones.

Hueneme Aquifer

The Hueneme aquifer is composed of irregularly interbedded sand, silt and clay,

with some gravel. Its thickness ranges from 100 feet within the City of Port Hueneme

to about 300 feet north of the City of Oxnard. Permeability for this water-bearing
2

zone is estimated to be AOO to 600 gpd/ft . It is thought to be in hydraulic continuity

with the ocean.

Separating the Hueneme aquifer from the underlying Fox Canyon aquifer is an

aquitard that is composed of silt and clay. These sediments are absent only in the

northern portion of the forebay area, where the Fox Canyon aquifer merges with the

Hueneme aquifer. Although the thickness in the study area is not known, the aquitard 's

maximum thickness for the basin is approximately 170 feet.

Fox Canyon Aquifer

The Fox Canyon aquifer is composed of fine to coarse-grained sand with gravel

stringers and interbedded silt and clay, and has a maximum thickness of approximately

550 feet in Oxnard Basin. Permeabilities for this water-bearing zone range from 200 to

2
AOO gpd/ft . Besides merging with the Hueneme zone, the Fox Canyon is also in hydraulic

continuity with the overlying Oxnard aquifer. The Fox Canyon is the second most impor-

tant water producer after the Oxnard aquifer.

The aquitard that separates the Fox Canyon and the underlying Grimes Canyon

aquifer is composed of silt and clay; it attains a maximum thickness of about 40 feet

in Oxnard Basin.

Grimes Canyon Aquifer

Most of the information concerning the Grimes Canyon aquifer has been derived

from oil well electric logs. Very few water wells are perforated in this water-bearing

zone. These electric logs indicate that the aquifer is composed of fine to coarse-

grained materials, with a maximum thickness of more than 1,500 feet. The areal extent

of the Grimes Canyon aquifer is approximately the same as that of the Fox Canyon aquifer.
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No tests have been conducted to determine its permeability range.

C. REGIONAL RECHARGE

Recharge water may enter the forebay area of Oxnard Basin in many ways. These

are, not necessarily in order of importance: natural percolation of surface waters in

the Santa Clara River, percolation of Santa Clara River water that is diverted to the

spreading grounds in El Rio and Saticoy, subsurface inflow from Santa Paula Basin, and

percolation of precipitation.

The principal recharge for the Oxnard Basin pressure area is by subsurface

Inflow from the forebay area. In addition, some subsurface water flows from West Las

Posas Basin. If the piezometric elevations are below sea level, subsurface water flows

into the aquifers from offshore.

D. HISTORY OF WATER WITHDRAWAL

Artesian conditions existed in the Oxnard Basin pressure area during years of

ground water surplus. At that time ground water flowed to the ocean through the

aquifers that outcrop offshore.

Deficient water conditions became apparent, however, as urban and agricultural

economy expanded and annual extractions from the Oxnard Basin exceeded annual replenish-

ment. This unbalanced condition caused piezometric levels to drop to elevations below

sea level, with the result that the Oxnard aquifer was soon intruded with sea water.

The most serious deficiency of ground water occurred during the latter part of 1947.

Prior to this, during the wet period from 1937 to 1945, water levels in the Oxnard

aquifer had recovered and had remained above sea level. The water levels started to

decline in 1945 and remained at low levels because of decreased precipitation. Only

in 1969 have water levels begun to recover because of increased precipitation.

E. SEA WATER INTRUSION

Sea water intrusion was first recorded in 1950, but was suspected as far back

as the early 1930' s. By 1952, three water wells located near the head of the Hueneme

submarine canyon exceeded the recommended chloride ion concentration for most uses.

Definite evidence of sea water intrusion in the Point Mugu area appeared about 1958.

A total of 44 water wells (42 near Port Hueneme and 2 near Point Mugu) were affected

by sea water intrusion by the summer of 1963.

By 1965, 169,000 acre-feet of usable storage capacity in the Oxnard Basin was

lost to sea water. This consisted of approximately 91,000 acre-feet near Point Mugu
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and 78,000 acre-feet near Port Hueneme. This, of course, does not include offshore

storage capacity.

All the lateral movement of sea water in the Port Hueneme area has taken place

in the Oxnard aquifer. However, in the Point Mugu area, sea water has Invaded both

the Oxnard and Mugu aquifers. This is probably because in the vicinity of Mugu Lagoon

no aquitard separates the two aquifers and the Oxnard has no apparent clay cap.

At present, the most serious threat to the quality of ground water in the

Oxnard Basin is this intrusion of sea water at these two localities. Although little

is known about the three lower aquifers, the Hueneme, the Fox Canyon, and the Grimes

Canyon, very likely they also may be subjected to degradation by ocean water.
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CHAPTER IV. FLOW IN MULTIPLE AQUIFER SYSTEMS

S. P. Neuman and P. A. Witherspoon

A. INTRODUCTION

In dealing with non-steady flow of ground water to wells, it has been customary

to treat the aquifer from which fluid is being withdrawn as an independent geohydrologi-

cal unit. If the aquifer is confined from above and from below by layers that are

effectively impermeable, then methods based on the well-known Theis solution are usually

applicable. Quite often, however, the confining layers are not completely impermeable

but act as conduits for vertical migration of fluid from one aquifer to another. If

the confining layers are compressible, they can also release water from storage and

thereby increase the supply available to the aquifer. The combined effect of these

phenomena is known as leakage.

When the effects of leakage are detectable by observing drawdown in the aquifer

being pumped, the confining beds are called "aquitards," and the aquifer is referred to as

being "leaky." Where such effects are not easily detectable in the aquifer, the confining

beds are called "aquicludes," and the aquifer is termed "slightly leaky" [Neuman and

Witherspoon, 1968].

Since leakage means that there is hydraulic communication between aquifers that

are separated from each other by a series of aquitards or aquicludes, the behavior of

each aquifer is closely related to the behavior of all the other layers. Thus, instead

of focusing attention only on the particular aquifer from which fluid is being withdrawn,

it is necessary to study the behavior of a complex of layers which we call a "multiple

aquifer system."

A rigorous approach to flow in multiple aquifer systems involves boundary

conditions that are difficult to treat analytically. It has, therefore, been customary

to simplify the mathematics by assuming that flow is essentially horizontal in the

aquifers and vertical in the aquitards. The validity of this assumption for a system

composed of two aquifers that are separated by an aquitard has been investigated using

the finite element method, and the results are given in Appendix A (see Figures VI-11

to IV- 14) . It was found that when the permeabilities of the aquifers are more than

two orders of magnitude greater than that of the aquitard, the errors introduced by

this assumption are usually less than 5%. These errors increase with time, decrease
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with radial distance from the pumping

well, and are smallest in the pumped

aquifer and greatest in the aquitard.

Since the permeability contrast between

aquifer and aquitard is usually more

than two orders of magnitude, it appears

that the above assumption can be used

with confidence.

Consider now a confined system

of two aquifers that enclose an aquitard

as shown schematically on Figure IV-1.

A well of infinitesimal radius is com-

pleted in the lower aquifer and discharges

at a constant rate Q, . If this system

reaches a steady state, then the assump-

tion of vertical flow in the aquitard

implies that the rate at which water leaks into the pumped aquifer is proportional to

the potential drop across the aquitard. Flow in the pumped aquifer can then be des-

cribed by the partial differential equation

TTTf

I I

I I

±1

AQUIFER I

/ / / ! ! n I nn ) I ! n ! 1 1 / / n) n / n I

Fig. IV-1. Schematic diagram of

two-aquifer system

2
9 s^

^
3s^ (s^ - s„)

+ — — = =— =
2 r 9r „2

^ (IV-1)

3r B
11

[cf. Polubarinova Kochina, 1962]. Similarly, flow in the unpumped aquifer is governed

by

8% 8s2

.2 r 3r
dr

(S2 - s^)

21

= (IV-2)

Here B^. and B.^ are known as "leakage factors". When the aquitard is impermeable
2 2

(K^' = 0) then B = B--, = °°, the terms (s^^ - S2)/B and (s„ - s )/B „ vanish, and

the above equations reduce to Laplace's equation as expected for non-leaky aquifers.

This approach to steady flow in leaky aquifers was first introduced into the

literature by DeGlee [1930] and was later used by Steggenventz and Van Ness [1939].

Additional work along these lines by Glebov [19A0], Myatiev [1946, 19A7], and Girinsky

[19A7] has been summarized by Polubarinova-Kochina [1962] and Aravin and Numerov [1965],

Explanation of symbols is given in Notation.

-22-



Jacob [1946] extended this approach to non-steady state by writing

2
3 s 3s s, S 9s,

1
,

1 1 1 si 1 , ,

where it is assumed that drawdown in the unpuraped aquifer remains zero. However, it

is important to recognize that this equation is still based on the assumption that

leakage is proportional to the potential drop across the aquitard. While correct for

steady state, under non-steady conditions such an assumption is tantamount to ignoring

the possibility of water being released from storage in the aquitard. The assumption

of zero drawdown in the unpumped aquifer is an additional limitation of Jacob's approach.

Nevertheless, between the years 1949 and 1960, Hantush [1949, 1956, 1957, 1959] and

Hantush and Jacob [1954, 1955a, 1955b, 1960] have used this approach to develop a

large number of solutions to various problems involving flow in leaky aquifers.

In 1960 Hantush [1960a) published a modification of Jacob's approach in which,

for the first time, consideration was given to the effect of storage in the aquitard.

A detailed discussion of this modified approach is given in Appendix A, Chapter II-B.

Although Hantush 's modification constituted an improvement over Jacob's theory, it has

never been used in subsequent work on leaky aquifers. Between 1961 and 1967, Hantush

[1962, 1964, 1967a, 1967b] and DeWiest [1961, 1963] analyzed various problems involving

flow in leaky aquifers, but in all of this work, storage effects in the aquitard were

consistently neglected. In only one of these analyses has Hantush [1967b] allowed

drawdown in the unpumped aquifer to vary with time. Yotov [1968] has extended the

application of equation IV-3 to unconfined aquifers with delayed yield.

The assumption of linear potential drop across the aquitard (i.e., no storage in

the aquitard) is obviously in error at early values of pumping time. At large values

of time, such a situation may eventually be realized if the system approaches a quasi-

steady state. The other assumption of no drawdown in the unpumped aquifer is valid

at sufficiently small values of time, in which case the effects of this aquifer on the

rest of the system can be ignored. However, these effects can be quite significant at

large values of time. Therefore, proper consideration must be given to both storage

and drawdown at all points in the flow region if one wishes to obtain a complete

understanding of the nature of flow in a multiple aquifer system.

In an effort to provide a more complete description of the behavior of flow in

such systems, we shall present below analytical solutions for non-steady flow in a

confined two-aquifer system. However, in contrast to previous work, we shall consider

the effects of storage in the aquitard and allow drawdown in the unpumped aquifer to

vary with time.
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B. THEORETICAL STUDIES

1 . Analytical Solutions for a Two-Aquifer System

Consider again the two-aquifer system shown in Figure IV-1. As mentioned

earlier, we shall assume that flow is vertical in the aquitard and horizontal in both

aquifers. One apparent implication of this assumption is that the unpumped aquifer

must be thin enough so that drawdown across its thickness at any time may be regarded

as constant. The principle here is analogous to that of temperature distribution in

a cooling fin. From a practical standpoint, however, we have found that the thickness

of the unpumped aquifer has little effect on the applicability of our solutions

(Appendix A, Chapter IV-A) . Similarly, no restriction on the thickness of the pumped

aquifer is necessary because the radial gradients induced by the well are much larger

than the vertical gradients in this layer caused by inflow from the aquitard.

Using Hantush's modified approach to leaky aquifers, we shall formulate the

problem as follows:

„ 2 r 3r T, 3z
dr 1

s^(r, 0) =

s^(°°, t) =

lim
r-K) 3r 2ttT,

S 3s,
si 1

K^ 3t

Aquifer 1

(pumped)
(IV-4)

3^s/ S' 3s,
1 _ si 1

. 2 KV 3t
3z 1

s^'(r, z, 0) =

s^' (r, 0, t) = Sj^(r, t)

s^'(r, H^', t) = S2(r, t)

) Aquitard 1 (IV-5)
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2^ l!!2

2 r 3r
8r

S2(r, 0)

s^i"", t)

T2 az

lim
3s,

r^ 3r

S 3s- \
S2 2

K^ 3t

s = H^'

I Aquifer 2

(unpumped)
(IV-6)

A rigorous solution to equations IV-4, IV-5, and IV-6 is obtained using Laplace and

Hankel transforms. The details of this procedure are outlined in Appendix A (Chapter

II-C) . The results are expressed in terms of five dimensionless parameters: (a) 3 and

r/B^^ with reference to the pumped aquifer, (b) B^ and r/B with reference to the un-

pumped aquifer, and (c) t , dimensionless time with reference to the pumped aquifer.

Drawdown in the pumped aquifer is given by

^('^' '> = aw:
-y t.

'){[! + G(y)] J^ [a)j^(y)]

iz+ [1 - G(y)] J^ [002(7)],
y

(IV-7)

In the aquitard

^1 2
"1 ('^' ^' ^) = 4^¥

n=l

1 . nTTz

n ^^" H^

2 2- 2-
2^2- -n IT t„ -y^t„

1 - e"" ^
'di + ^ P^ - ^ P^

-,
2,, 2 2,

1-y /(n TT )

2(r/B2^)^-l)" y

F(y) sin y

2(r/B2P^(-l)" y

F(y) sin y

In the unpumped aquifer

"2^'^' ^) = 4^

G(y) - 1

- G(y) + 1

J^[oJ^(y)]

J,
[.2(y)]^f

(IV-8)

2-
] 2(r/B )

I

,

(IV-9)
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where t^ = t^ (r/B^
^

) '^/ (46^ ^ )
^ and t

Ui Ui ii ii

Kjt

" 'TV
Sl

(IV-10)

G(y) = M(y)/F(y)

w/(y) =
"I

[N(y) + F(y)]

(IV-11)

(IV-12)

(IV-13)

F^(y) = M^(y) +

M(y) =
(r/B^^)^ ^^/^21^

2(r/B^^)(r/B2^)y

sin y

(A3,,)' (432,)'

2 , ,2
r 1 r

11 21
y cot y

(IV-14)

(IV-15)

N(y) =
'^'^\/ (r^

'' 2
(432,) _,

(r3„) 11 21
y cot y (IV-16)

In all of these equations J [w (y) ] must be set to zero when OJ^ (y) < 0, and the same

is true of J [w„(y)] when OJ. (y) < 0. It should be mentioned that equations IV-7

through IV-16 could be expressed in simpler form as may be seen in Appendix A.

However, we have chosen to use r/B and 3 because these parameters have been extensively

employed in most work dealing with leaky aquifers.

It is of interest to note that when K ' -> (i.e., the aquitard is impermeable),

equation IV-7 reduces to the Theis solution. This is shown in Appendix A (Chapter II-C).

2. Solutions for Case When Aquifers Have Identical Properties

If the hydraulic properties of both aquifers are the same, then r/B = r/B„.

3,, = 32,- As a result G(y) = M(y) = and (IV-7), (IV-8) , and (IV-9) simplify

respectively to

"i^'^' ^) = 4w: (1 - e-y\
) < J^ [co.(y)] + J^ [a)„(y)]

dZ
o ' 1 o '2 (IV-17)

^'^^' ^' ""^ = 4W^f
1 . niTz

n ^^"ly

n=l

2 2- 2- -I

2 2- -n IT t„ -y t^

1 - e Di + —
T

2,. 2 2,
1 - y / (n IT )

[(-D^'-l] J^ [a),(y)] - [(-D^'+l] J^ [i^^iy)]) ^ (IV-18)
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S2(r, t)=^
/

(1 - e"^ SiXJj^ [a,^(y)] - J^ [a)2(y)])^

2(r/B^^)\
where instead of (IV-14) and (IV-16) , one now must use F(v) = —

:

and

(IV-19)

sin y

N(v)
2(r/B^P

y^ - 2(r/B^^)^y cot y

As before, the Bessel functions must be set to zero when the squares of their

arguments are negative.

3. Asymntotic Solutions for Early Time

In his modified theory of leaky aquifers, Hantush [1960a] presented a solution

in the pumped aquifer that applies to our problem at early time. His solution can be

expressed as

Qn .-y

'i^'^ '^ = aw: erf c
11

Vy(4tp^y-1)
dy (IV-20)

4t

1.6 3

Di

where t <:
11

' (r/B^P
(IV-21)

A corresponding solution in the aquitard has been developed by the authors (see

Appendix A, Chapter II-E)

:

s ' (r, z, t) =
, ^

1 ' ' ' 4ttT,

-V
e

erf c

B^^ + y(z/H^')43^^/(r/B^p

Vy(to^y-i)

21

At.

erf c

B^^ + y(2-z/H^')4B^^/(r/B^^)'

Vy(^tp^y-i)
'dy (IV-22)

If the thickness of the aquitard is sufficiently large, equation IV-22 can be further

g

^1 r" .-y

simplified by letting H ' ->«'. The resulting equation is

^l'^'^' ^' ^^ =J^^ erf c

_1^
At

^11 -^ yV^p/^p/

Vy(Atj^^y-l)
dy (IV-23)

P,
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which is identical with a solution previously developed by Hantush (personal

conununication, 1960).

4. Discussion of Pesults for a Two-Aquifer System

To study the nature of these analytical solutions, we have evaluated them

numerically using the Zonneveld adaptation of the Adams-Moulton method of numerical

Integration. The asymptotic solutions require much less computer time than the more

complicated general solutions and were therefore used whenever applicable, i.e.,

whenever

1.6 3,,2

As a first approach, let us consider the case where both aquifers have identical

geometry and hydraulic properties . If we choose 6-,-, = r/B , = 0.01 and 3„, = r/B. =

0.01, we can evaluate equations IV-7 through IV-9 (or equations IV-17 through IV-19)

in terms of dimensionless drawdown, s , and dimensionless time with respect to the

pumped aquifer, t„ .

The results are shown in Figure IV-2, as a family of five curves. The upper

curve represents behavior in the pumped aquifer, the lower curve represents dimension-

less drawdown in the unpumped aquifer, and the three intermediate curves show results

for various elevations in the aquitard. The Theis solution is included for reference

purposes. Results for the cases where 3 and r/B parameters are increased to 0.1 and 1.0

are shown on Figures IV-3 and IV-4, respectively.

The validity of these results was verified independently using the finite

element method. A discussion of this method is given in Chapter III of Appendix A, and

the particular finite element network used is also described. The finite element method

is a numerical technique that enables one to analyze flow behavior in layered systems

with arbitrary degrees of heterogeneity and anisotropy. A further advantage of the

method is that systems with complicated geometry and boundary conditions are easily

handled. The finite element method provides a realistic check on the analytical

solutions because, contrary to these solutions, it does not assume that flow is

horizontal in the aquifers and vertical in the aquitard.

Figures IV-2, IV-3 and IV-4 show the kind of correspondence that was obtained

between the analytical solutions and the finite element results. Excellent agreement

was obtained in all cases. At small values of time when vertical gradients in the

aquitard are large, an extremely fine network is required in order to obtain acceptable

results. The network used in our work was not always fine enough to accomplish this.
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One must note, however, that our curves give data over a much greater range than is

ordinarily available in the literature.

As another example, we shall now consider the case where 3,, = 3,, = 0.01 and

r/B = r/Bj-i = 0.1 as shown on Figure IV-5. Further examples of the effects of these

parameters may be found in Appendix A (Chapter IV)

.

A comparison of Figures IV-2 through IV-5 shows that (a) for a fixed ratio of

3, , /(r/B-j^j^), the spread between the curves decreases as the magnitudes of 3,, and r/B -

are increased, and (b) for a given value of either 6 or r/B^^, the spread between the

curves decreases as the ratio 3,i/(r/B^.) decreases.

To explain the first relationship, we recall that

(IV-24)

This shows that the ratio (r/B )/S,, remains constant while changing either r of K ' /K .

As radial distance increases, drawdowns in the pumped aquifer become smaller, and

vertical gradients across the aquitard are also smaller. On the other hand, if R ' /K

increases, the permeability contrast decreases, and again these vertical gradients are

smaller. Thus, in both cases the net result is to cause the spread between the curves

to diminish.

The second relationship is explained by noting that if 3,, is fixed, r/B^ . must

increase for the ratio (r/B J/3., to increase. Equation IV-24 shows that one obvious

way to accomplish this is to decrease H. '
. Reducing the thickness of the aquitard will

decrease the time for the disturbance to reach any given dimensionless elevation z/H. '

and, therefore, bring the curves closer together. On the other hand, fixing r/B-.

implies that S, -, must decrease for this ratio to increase. Reference to (IV-2A) shows

that one way of accomplishing this is to decrease H. ' and at the same time increase H .

The effect is the same as before.

We have examined above only those cases where both aquifers have identical

properties such that 3,, = 3^, and r/B .. = r/B. . Now we shall discuss the more

general case where these properties are not identical. At early values of time, when
2 4

t <^ 1.6
3i-,

/(r/B ) , the solutions given by equations IV-20 and IV-22 are independent

of 3„, and r/B„ . Thus, the properties of the unpumped aquifer do not affect drawdowns

in other parts of the system at sufficiently small values of time.

As time increases, however, drawdowns everywhere in the system become affected

by the presence of the unpumped aquifer (i.e., by 3~, and r/B„ ) . To show this, we shall

consider a system where 3, • = r/B =0.1 and the properties of the unpumped aquifer vary
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in such a way that P^, and r/B~, range from zero to infinity. These situations

correspond respectively to infinity and zero transmissibilities in the unpumped

aquifer.

Figure IV-6 shows results for z/H ' = 0.8 in the aquitard, and Figure IV-7

shows the effects in the pumped aquifer. Both results were obtained using the finite

element method, but the particular curves for 6^, = r/B„ =0.1 and were also checked

using the analytical solutions. It should be realized that as the permeability of the

unpumped aquifer approaches zero (i.e., 3 = r/B-, -* ») , the assumption of vertical

flow in the aquitard is no longer applicable at large values of time, and consequently

the analytical solutions must be used with caution.

It can be seen in Figures IV-6 and IV-7 that when transmissibility of the

unpumped aquifer becomes very large (i.e., T -* °°) , drawdowns become constant as the

quasi-steady state is reached. In this case, drawdown distribution across the thickness

of the aquitard is linear at any given radial distance from the pumping well. These

results further suggest that when T^ > 100 T^ (i.e., B < 0.1 3 and r/B < 0.1 r/B )

one is probably justified in neglecting drawdown in the unpumped aquifer. It should be

noted that the spread in the curves, which reflects the effect of the properties of the

unpumped aquifer, increases significantly with vertical distance from the pumped aquifer.

This is to be expected because the closer the observation point is to the unpumped

aquifer, the greater effect the properties of this aquifer will have.

5. Analytical Solutions for a Three-

Aquifer System

Previously, our attention has been

focused on a relatively simple system that

consisted only of two aquifers and one

aquitard. We shall now consider a more

general situation where the system involves

three aquifers that are separated from each

other by two aquitards. Such a three aquifer

system is illustrated in Figure IV-8.

We have solved this problem rigor-

ously using essentially the same approach

as that employed in analyzing the two-aquifer

problem. The details of the mathematics are

outlined in Appendix A (Chap. II-D) . However,

the solutions that were obtained are difficult

to evaluate and therefore, were not used in

r
02
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studying the behavior of a three-aquifer system. Nevertheless, these solutions are

important because they enable one to identify the dimensionless parameters 3 and r/B

that control the behavior of a three aquifer system. Knowing the form of these para-

meters is very helpful in applying finite element or finite difference numerical

methods to the study of flow in multiple-aquifer systems (see Appendix A, Chapter IV)

While rigorous solutions are difficult to evaluate, the same does not hold

true for the asymptotic solutions at early values of time. When

1.6 gV 21
1.6 3

(r/B^^)

and t <:
22

(r/B22)

drawdown in the pumped aquifer is predicted by Hantush's [1960a] solution

S2(r, t)
AttTo

4t.
D2

erf c
21 22

Vy(4tj^^y-1)

dy (IV-25)

We have also developed asymptotic solutions for the aquitards (see Appendix A,

Chapter II-E) that can be expressed as

^'('^' "' ') = 4w:

-y
erf c

^21 ^ ^22 ^ y(z'/H^')432^/(r/B2^)

Vy(Atp^y-l)

2-\

4t.

- erf

c

^21 ^ ^22 ^ y(2-z'/H^')432;^/(r/B2^)'

Vy(4t y-1)
>dy (IV-26)

and

S2'(r, z, t)
4ttT,

At..

erf c
^21 "^ ^22 "^ y(z/H2')4622/(r/B22)

Vy(Atpj-i)

2 1

erf c
?2i

+ 622 + y(2-z/H2')4322/(r/B22)'

Vy(AtQ^y-l)
dy (IV-27)
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At sufficiently small values of time, or when the thickness of Aquitard 1 is

large, equation IV-26 can be simplified by letting H ' ^ °°. The result becomes

^^2 y
s/(r, z, t) ^^^

2 J
y

_JL

erf c
"s,i^3,, ^yVy/tp;

VyC^S^y-i)
dy (IV-28)

K^'t
where t ' = — 7 . Similarly, if we let H ' ^ «=, then (IV-27) reduces to

°i S 'z'
"^

si

11 ^ ^22 ^ yVVV
Vy('^tjj y-1)

K2't
where t^ ' = r- .

S2

Since the properties of the unpumped aquifers do not enter into equations IV-25 through

IV-29, it is obvious that these equations will apply in multiple aquifer systems that

are composed of an arbitrary number of layers. Another special case that leads to a

relatively simple solution is one where drawdown in the two unpumped aquifers is

assumed to remain zero. The solution in the pumped aquifer is given by

s^Cr. t) =^ 2/ (l-e-V\j^ [a)(y)]f (IV-30)

where

2 2
w (y) = y - ^Bj-t y cot

AB^iy

(r/B2P'
4^22 y cot

4622 y

(r/B22)'

and J [co(y)] must be set to zero when to (y) < 0. In Aquitard 1 the solution is

^l'^"^' "' '^ = - 2^ f
1 . nTTz'

sinaxil
IT I

n H

n=l

2 2

1 - e 21 D2

2 2

-y t^ - e 21 D2
e D2

n 2 2
e2,n TT

J^[.2(y)]f (Iv-31)
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where 6

The same equation can also be applied to Aquitard 2, provided that H ' and O^, are

replaced by H„' and S,,, respectively. The details of the mathematics are outlined

in Appendix A (Chapter II-F)

.

6. Theory of Flow in a Slightly Leaky System

When the pumped aquifer is confined between two aquitards that have a very low

permeability (i.e. aquicludes) , drawdown in the aquifer will usually follow the well-

known Theis solution. This simply means that the amount of water contributed by the

aquicludes is too small to show the usual effects of leakage and, therefore, one may

refer to such a system as being "slightly leaky". Let us again consider a two aquifer

system such as in Figure IV-1. Assuming that drawdown in the unpumped aquifer remains

zero, flow in the aquiclude may be characterized by

dz

1
^^1'

a^' 3t
(IV-32)

s^'(r, z, 0) =

Sj^'(r, 0, t)
4ttT,

Ei
4t^

(IV-33)

(IV-34)

Sj^'(r, H^', t) = (IV-35)

It can be shown [Neuman and Wltherspoon, 1968] that a solution to this problem

is given by

Sj^'(r, z, t)

niTz r T

- Ei

n=l

nlTz

At
Di

ye ^ dy (IV-36)

At large values of time (or small values of z) one can assume that t ' -»- 00^ which

means that the exponential integral in (IV-36) approaches - Ei [- 1/At ], The

remaining integral approaches 1/2, and therefore (IV-36) becomes
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- Ei (-l/4t^ )

n=l

1 . nTTz

AttT,
- Ei (-l/4t_ )

Di (1-^) (IV-37)

Thus, the ratio between drawdown in the aquiclude at some given distance r and drawdown

in the aquifer at the same radial distance from the pumping well is given by

^= 1
s H

1

(IV-38)

Since we have assumed no drawdown in the unpumped aquifer, there will be a

linear variation in the drawdown across the aquiclude as the quasi-steady state is

approached.

At sufficiently small values of time, or when the aquiclude is relatively

thick, one can obtain a simpler expression by letting H ' ^ °°. In this case, boundary

condition (IV-35) changes to

s^'(r, 0°, t) = (IV-39)

and the solution becomes [Neuman and Witherspoon, 1968]

./ ^ '12
"l ^''' ^' t) = 4^-

V^ {

- Ei
^.y

^d/^s;^'-i^

2 ,

-y dy (IV-40)

2A/T
Di

At large values of time (or small values of z) the exponential integral in (IV-AO)

approaches - Ei [-l/4t^ ] such that

s^'(r, z, t)
4t7T,

Ei (-l/4t^ ) erf (<»)
47TT,

- Ei (-l/4t^ ) (IV-41)

Consequently, the ratio between drawdown in the aquitard and in the aquifer vertically

below is unity, or

= 1 (IV-42)

This, of course, could have been anticipated from (IV-38) where H ' is taken to be very

large (H^' -* co)
.
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It should be noted that all of the above equations are also valid for an

aquitard that lies below the pumped aquifer, provided that z is measured downward

from the bottom of this aquifer.

Equations IV-36 and IV-40 have been evaluated numerically using Zonneveld's

adaptation of the Adams-Moulton method. Extensive tables of results for both finite

and infinite aquitard have been published elsewhere [Witherspoon et al., 1967]. These

results cover a practical range of dimensionless time and values of z/H ' ranging from

to 0.9. For further discussion of these results, the reader is referred to Neuman

and Witherspoon [1968].

C. APPLICABILITY OF EARLIER THEORIES OF FLOW IN LEAKY AQUIFERS

In discussing the evolution of theories dealing with flow in leaky aquifers,

we mentioned the fact that it has always been customary to use one or both of the

following two assumptions: (1) storage in the aquitards is negligible, and (2)

drawdown in the unpumped aquifers remains zero. Since our new theory does not rely

on any of these assumptions, it can be used to investigate the applicability of the

simplifications introduced in the earlier approaches. To do this, we shall first

consider a solution by Hantush and Jacob [1955b] that describes non-steady radial

flow to a well completely penetrating an infinite leaky aquifer and discharging at

a constant rate. This solution is of particular interest to us because it has been

extensively tabulated [Hantush, 1956] and the resulting type curves are being widely

used in evaluating the properties of leaky aquifers [Ferris et al . , 1962; Walton,

1960, 1962; Slater, 1963; DeWiest, 1965; Narasimhan, 1968]. The results of this

solution are usually presented in terms of the dimensionless parameter

r/B ^ '

^'

KHH'

which we note is a function of the permeability contrast between the pumped aquifer

and an adjacent aquitard. We shall refer to this as the "r/B solution".

Subsequent to the r/B solution, Hantush [1960a] published his modified theory

of flow in leaky aquifers where for the first time consideration was given to effects

of storage in the aquitards. Assuming again that drawdowns in the unpumped aquifers

remain zero, Hantush was able to develop asymptotic solutions for the pumped aquifer

that apply only at small and large values of time. His solution for small values of

time (see equations IV-20 and IV-25) has been extensively tabulated [Hantush, 1960b]

in terms of the dimensionless parameter

4H ^ K S
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which we see differs from r/B in that the effects of storage are now included. We

shall refer to this as the "3 solution". His solution for large values of time can

be written

exp - y -
"i^'^' ') = 4w:

4t
Di

Ay y
(IV-43)

16 6

where 6^ = 1 +
11

3(r/B^^)'
(IV-44)

and his criterion for the validity of this solution can be expressed as

2
80 3

11

(r/B^^)

(IV-45)

It is seen by virtue of the expressions given for 6 and t in (IV-20) , (IV-44) , and

(IV-45) that (IV-20) and (IV-43) are functions of both 3 and r/B . In addition, it

is evident from these limits on t^ that, for given values of 3,, and r/B-. , these
Di ii ii

solutions cover the entire time domain except for an interval whose span is less than

two log cycles.

A comolete solution to this problem for all values of time has been developed

in this work and is given in equation IV-30. For a two-aquifer system such as in

Figure IV-1, this solution may be written

s^ir, t)
4ttT,

(1

2

e"^ ''Di) J^ [U(y)] ^ (IV- 46)

where

2 2
(D (y) = y 43

11 y '^^^

A3,,y

/^/^l) J

and J [u)(y) ] must be set to zero when UJ (y) < 0.

Equation IV-46 has been evaluated numerically and the results for values of

3ii
of 0.01 and 0.1 and various values of r/B^ are shown in Figures IV-9 and IV-10,

respectively. In each figure, we see an envelope from which a family of r/B.. curves

extend. The position of the envelope depends on the magnitude of 3,,, and as this

parameter increases in magnitude one sees that deviations from the Theis solution also
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Fig. IV-9. Dimensionless drawdown in pumped aquifer

when drawdown in unpumped aquifer is zero
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increase. As r/B,, increases, the curves diverge from the envelope at earlier and

earlier values of dimensionless time. These curves reach steady state values for

dimension less drawdowns that are identical with those obtained by Hantush [1956].

Additional graphs for other values of 6 are given in Appendix A (Chapter IV-A)

•

Each curve on Figures IV-9 and IV-10 has been divided by a set of parentheses

into three sections. The section to the left of the parentheses corresponds to

Hantush's [1960a] definition of small values of time (i.e., t„ < 1.6 B,, /(r/B, ,) )
Di 11 11

from his 6 solution. Our results as obtained from equation IV-46 are identical with

his (as given by equation IV-20) over these same time intervals.

The section to the right of the parentheses on each curve corresponds to

Hantush's solution for large values of time (equation IV-43) . Again our results as

obtained from equation IV-46 are identical with those evaluated by Hantush [1960a]

from equation IV-43.

The section on each curve that is enclosed by parentheses, therefore, repre-

sents a time interval for which Hantush [1960a] stated his asymptotic solutions should

not be used. Our results indicate that his criteria for the validity of his solutions

are on the conservative side and could be relaxed somewhat.

1 . Evaluating the Assumption that Storage in the Aquitard May Be Neglected

As indicated earlier, Hantush and Jacob [1955b] have solved the above problem

of flow in a leaky aquifer by assuming that the storage capacity of the aquitard can

be neglected. Their solution for all values of time can be expressed as

^1

"l^'^' ^) = 4^ /
^^P

(r/B^^)2

y 4y
^ (IV-47)
y

Dl

and has been referred to here as the r/B solution. One may note that if storage is to

be neglected, then 3 = in (IV-44) , and equations IV-43 and IV-47 are identical.

Anyone familiar with the literature on leaky aquifers will immediately recog-

nize that the family of curves shown in Figure IV-9 for 6,, = 0.01 is almost identical

with that of the r/B solution. The only difference is that the envelope of curves

instead of coinciding with the Theis solution slowly diverges from it as time increases.

Thus if one is analyzing field data at large values of time for a system with

6,, = 0.01, ignoring the effects of storage in the aquitard will only introduce a slight

error as long as r/B . is also small (i.e., -g 0.01). From a practical standpoint.
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however, it would appear that neglecting storage in the aquitard should not affect the

solution for the pumped aquifer as long as 3,., $ 0.01.

An examination of Figures IV-9 and IV-IG shows that as 3,, increases, the r/B

solution becomes less and less representative of the actual behavior in the pumped

aquifer. The errors involved in the r/B solution become significant when 3,, reaches

0.1 and they are large when 3,^ = 1.0.

The nature of these errors for large values of 3,-, can be better understood by

superposing the r/B solution on the 3,-, = 1.0 solution as shown in Figure IV-11. One

sees immediately that the errors involved in the r/B solution increase as the magnitude

of r/B decreases. However, from the convergence of the curves for the two solutions

at large values of time, it is also apparent that these errors decrease with time and

disappear altogether for those values of t given by (IV-45) . We therefore conclude

that with large values of 3,, and zero drawdown in the unpumped aquifer, the r/B
/

solution is subject to significant errors whenever t^ < 80 S:, , / ('^ /'&-, -,) •

Di 11 11

For the particular case of 3,, = 1.0 as shown on Figure IV-11, this means that

the entire non-steady state period of pumping cannot be analyzed using the r/B solution.

In other words, the r/B solution would only be applicable to the steady state after

drawdowns have become constant. It should be kept in mind that the steady state

regions on all the curves of Figures IV-9, IV-10, and IV-11 are the result of the

initial assumption that drawdown remains zero in the unpumped aquifer.

There is a simple physical explanation for the errors in the r/B solution when

3,-, is large. At small values of time, the disturbance created by withdrawing water

has not yet significantly affected the unpumped aquifer. Most of the early leakage is

derived from the aquitard, and the amount depends on the specific storage of this part

of the system, i.e., on the magnitude of 3,-,. At this stage, disregarding storage in

the aquitard is equivalent to neglecting leakage altogether. Thus the resulting curves

for the r/B solution fail to show the true effects of leakage at early time.

As time increases, more and more leakage is being contributed by the unpumped

aquifer, and the relative amount of water that comes from storage in the aquitard

diminishes. By the time steady state is reached and drawdowns are constant, all of

the leakage is supplied by the unpumped aquifer. The aquitard merely acts as a conduit

for flow from one aquifer to another. The storage capacity of the aquitard has no

influence on the behavior of the system, and therefore the r/B solution is applicable.

The assumption that storage in the aquitard may be neglected obviously fails

completely if one is interested in the transient behavior of the aquitard itself.

2 . Evaluating the Assumption that Drawdown in the Unpumped Aquifer May Be Neglected

As mentioned earlier, we have obtained a complete solution to the problem of
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Fig. IV-11. Comparison of solution for pumped aquifer
when 6 = 1.0 with r/B solution.
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flow in a two aquifer system for the case when drawdown in the unpumped aquifer is not

necessarily zero. The results are expressed in terms of the five parameters 6,,, r/B^ .

,

6~. , r/B„. , and t , and are given by equations IV-7 through IV-16. These solutions

have been evaluated for selected values of the controlling parameters, and some of the

results for the particular case when B-,-, = '^/B-,-, = 0.1 are shown in Figure IV-6 and IV-7.

As might be expected, the results in the pumped aquifer are independent of &„.

and r/B„^ at small values of time. In general we found that the transient behavior of

the pumped aquifer and the aquitard was not affected by conditions in the unpumped

aquifer as long as equation IV-21 is satisfied. However, transient effects in the

unpumped aquifer are dependent on 0„. and r/B- as well as on 3,, and r/B^ ^ at all

values of time. Thus the assumption that drawdown in the unpumped aquifer may be

neglected is valid at small values of time everywhere in the system except in the

unpumped aquifer itself.
2 4

At larger values of time when t„ > 1.6 3,, /(r/Bn) , the behavior of the
Uj ii '

'11'

unpumped aquifer may have a significant effect on drawdown in other parts of the

system. For example, reference to Figure IV-7 will show that the results for the

pumped aquifer that are uniquely defined for a given 6^^ and i^/B,, at small values of

time become a family of curves at large values of time, depending on the values of Q.

and r/B^,.

A family with three branches is shown for the drawdown curve of the pumped

aquifer in Figure IV-7. The lower branch corresponds to the special case previously
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discussed in connection with Figures IV-9 and IV-10, where it was assumed that there

is no drawdown in the unpumped aquifer. A necessary condition for zero drawdown in

the unpumped aquifer is that its transmissibility be infinitely large. Thus the

lower branch of the curves for the pumped aquifer on Figure IV-7 corresponds to the

special case where T„ = «>, which means 6„, = r/B. = 0.

When Sqi and r/B„^ are greater than zero, the assumption of no drawdown in the

unpumped aquifer will no longer be valid. For example the middle branch of the draw-

down curve for the pumped aquifer on Figure IV-7 represents another special case where

the hydraulic properties of both aquifers are identical, i.e., B-, , = 3^, and r/B =

r/B. . The upper branch represents the limiting case when 3^, = r/B„. = ~. This

latter case implies that the permeability of the unpumped aquifer is zero (K = 0) and

means that a no-flow boundary exists at the interface between the aquitard and the

unpumped aquifer. This corresponds to Hantush's [1960a] case 2 in his modified treat-

ment of leaky aquifers. It is clear from Figure IV-7 that when the transmissibility

of the unpumped aquifer is not infinitely large, as would usually be the case in the

field, drawdown in the pumped aquifer does not reach steady state.

The assumption of zero drawdown in the unpumped aquifer can therefore lead to

errors that will depend primarily on the magnitude of 3,-, and r/B,,. As is indicated

on Figure IV-7 where 3-,-, = ^/B.. = 0.1, these errors increase with time as the ratios

3„,/6-,, and (r/B„^ ) /(r/B^ ) increase, i.e., as the transmissibility and storage capacity

of the unpumped aquifer become less in relation to those of the pumped aquifer.

However, as the values of 3,-, and r/B . decrease, the errors introduced by

assuming zero drawdown in the unpumped aquifer will decrease for given ratios of T„/T^

and S /S . Theoretically these errors will not disappear completely unless theS2S1 fft-j
unpumped aquifer is replaced by a ponded body of water whose head remains constant.

From a practical standpoint these errors can probably be neglected in analyzing draw-

downs in the pumped aquifer when both 3,-, and r/B - < 0.01 or when the ratios T^/T,

and S /S are sufficiently large. Our present work suggests that 3oi and r/B„. shouldS2S1 Z X Z L

be about ten times smaller than 3,-, and r/B , respectively, in order for the errors to

be negligible. This needs further investigation.

If we now turn our attention briefly to the aquitard, one would anticipate that

the properties of the unpumped aquifer will have a much more profound effect on draw-

down in the aquitard than we have just seen for the pumped aquifer. To illustrate

this point we have included results on Figure IV-6 determined at only one location in

the aquitard (z/H ' = 0.8). Radial distance from the pumping well also becomes impor-

tant, and these aquitard results are for a distance of more than twice the combined

thicknesses of pumped aquifer and aquitard (H + H ' )

.

The aquitard results shown on Figure IV-5 for the limiting case of 3^, = i^/B^,

= <» reveal an interesting result. It will be noted that dimensionless drawdown in the
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aquitard coincides with that of the pumped aquifer at large values of time. This means

that in this limiting case of a no-flow boundary on one side of the aquitard, flow in

all parts of the system away from the immediate vicinity of the pumping well becomes

radial at large values of time. Javandel and Witherspoon [1968] report the same effect

has been noted for a well that partially penetrates a two-layered aquifer regardless

of the permeability contrast.

Thus, since it has been customary to assume vertical flow in the aquitard in

developing solutions for leaky aquifers, the special case of a no-flow boundary presents

a problem because the direction of flow is essentially vertical only at early time and

then slowly changes to become radial at large values of time, especially as distance

from the pumping well increases. Hantush's [1960a] asymptotic solution at large values

of time for case 2 in his modified approach to leaky aquifers does not take this into

consideration. However, in checking his results for the pumped aquifer, we found that

our solution, which in this case was obtained by the finite element method, is in good

agreement with his, indicating that direction of flow in the aquitard at this stage

does not affect the result in the pumped aquifer.

As mentioned earlier, Hantush [1967b] has also analyzed this two aquifer case

and developed solutions for drawdown in both the pumped and the unpumped aquifers.

However, he assumed that storage in the intervening aquitard could be neglected. It

is therefore of interest to see how our results, which Include the effects of storage

in the aquitard, compare with his. If we choose T = T„ (e.g., r/B = r/B ), then

Hantush's equations 17 and 18 for the special case of equal dif fusivities in both

aquifers (K /S = K„/S ) may be written
X S 1 i. S 2

s^(r, t)
8TrT,

exp (-y) + exp
2(r/B^^)'

y
(IV-48)

4t,

s^{r, t)
8ttT,

< exp (-y) - exp y
-
2(r/B^P'

4y

dz

y
(IV-49)

4t.

Figure IV-12 shows a comparison of results for the pumped and unpumped aquifers

as obtained using our solutions (equations IV-17 and IV-19) and as obtained using Hantush's

solutions (equations IV-48 and IV-49) . In both cases we arbitrarily chose 3 = 3,, =

r/B., = r/B- = 0.1. One may note that in the pumped aquifer our results differ some-

what from those of Hantush. His solution lies along the Theis solution at early time
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Fig. IV-12. Effect of neglecting storage in aquitard
on dimensionless drawdown in pumped and

unpumped aquifers.

and then diverges from it as time increases so as to lie between our solution and the

Thais curve. If we had chosen the case for 3,, = 3^, = 1.0, these differences would

be considerably greater.

It should be recalled that when we had zero drawdown in the unpumped aquifer,

errors due to neglecting storage in the aquitard did not disappear until steady state

was reached. Now we see from Figure IV-12 that when there is no steady state these

errors occur at all values of time.

For the unpumped aquifer, however, it is seen that there is a large difference

between our results and those of Hantush. His solution gives an earlier response and

a much greater drawdown than ours. This, of course, is to be expected because in our

system the aquitard contributes water from storage and therefore acts as a buffer

between the two aquifers. As might be expected the differences between our two solu-

tions for the unpumped aquifer will be even greater if Q = ^- = 1.0.

This naturally raises the question whether the magnitude of the storage

coefficient for an aquitard is so small that it can be neglected. This question is,

of course, difficult to answer because of the scarcity of data on the hydrologic

characteristics of aquitards. One source of such data is a comprehensive report

containing a number of laboratory measurements on core samples from several different

aquitards of Central California [Johnson et al. , 1968]. The materials range from

sandy silts to clays. Permeabilities range from 10 to over 10 gpd/ft , and
-6 -A -1

specific storage ranges from 3 x 10 to 5 x 10 ft
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More recently Wolff [1970] has presented laboratory data for a shallow aquiclude

in Salisbury, Maryland, composed primarily of clayey material. Permeabilities range

from 2 X 10 to 5 x 10 gpd/ft and specific storage ranges from 3 x 10 to 1 x 10

ft . Our own laboratory measurements on samples taken from the Oxnard aquitards (see

Table V-5) indicate values of specific storage that range from 1 x 10 to 6 x 10

ft . These data show that the specific storage of unconsolidated aquitard materials

is at least as large as that of most confined aquifer sands and gravels, if not sig-

nificantly greater. Under these circumstances, it is not difficult to show that S may

easily reach 0.1 and at times may exceed 1.0. If this is the case, our analysis indi-

cates that, in general, storage in the aquitard must be taken into consideration when

evaluating leaky systems.

3. Use of the r/B and 3 Solutions to Analyze Field Data

Several methods of using the r/B and 3 solutions to analyze the results of

pumping tests have been proposed by Jacob [1946], Hantush [1956, 1960a], and by

Narasimhan [1968]. The graphical curve matching methods of Jacob and Hantush are

discussed in Appendix A (Chapter V-A), where it is shown that they are limited in

application and may often lead to erroneous interpretations of the field data. The

ratio method proposed by Narasimhan has an advantage because it eliminates errors

due to individual judgment in the process of curve-matching. However, this method

is also based on the r/B solution and is, therefore, subject to the same limitations

as the r/B solution itself.

The following two examples of hypothetic field data will be used to Illustrate

the kind of errors that can arise when one uses the r/B curve matching procedure to

analyze the results of a pumping test.

For the first example we shall assume a two aquifer system (Figure IV-13) where

H = H„ = 25 feet, H ' = 100 feet, K = 1800 gpd/ft and S = 2 x 10 ft for the
9 —f, —1

aquifer being pumped, and K ' = 0.5 gpd/ft and S ' = 8 x 10 ft for the overlying
1 s 1

aquitard. We shall further assume that T >> T such that B~^ ~ r/Bj-, ~ 0, which

means that drawdown in the unpumped aquifer is negligible.

If an observation well is completed in Aquifer 1 at a distance of r = 300 feet

from the pumping well, the values of 3,, and r/B^^ become

300 -^ / (0.5)(8 x 10 ^)
^ Q .^

11 4H, V K,S„ (A) (25) \/ (i8oo)(2xlO-S
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Under these conditions we shall assume that a pumping test is performed with Q = 200

gpm, and the drawdown data at the observation well would of course follow the curve

for Q = r/B„, = 0.0 as shown on Figure IV-7. This fact, however, is unknown to the

analyst, and in using the r/B solution he would obtain the best match with r/B = 0.04

(see Figure IV-13). Using the indicated match point at s = 10, where s.. = 3.8 feet,

he would then obtain

11^-6
Q]^ ^D (114.6) (200) (10) .,^- ^ ,,.2

h - H^ J^- (25)(3.8)
- 2^^0 gpd/ft

^l'

(r/B^^) K^H^H^'
(0.04) (2410) (25) (100)

(300)^

= 0.11 gpd/ft
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Thus, we see that in using the r/B solution for this situation the calculated perme-

ability is too high for the aquifer (z337„) and almost five times too low for the

aquitard. The calculated permeability contrast would be K /K ' = 2410/0.11 = 21,900,

whereas the true value is only 3600.

If a second observation well were available at r = 300 feet, then drawdown data

would follow the curve for B,, = '^/B,, = 1.0 shown on Figure IV-11. If the analyst

again used the r/B solution in the same manner as above, he would probably obtain the

best match with r/B = 0.3. At the same match point of s = 10, where s = 1.5 feet,

he would then obtain

(114.6) (200) (10) ,,^- ,._2
'^l

= (25)(1.5) = ^^^° SP'^/^^

V ' (0-3)^(6110) (25) (100) - _ ,.^2K =
y

= 0.15 gpd/ft
(30000)

From this second set of results, we see that the calculated permeability is

three times too high for the aquifer and three times too low for the aquitard. The

calculated permeability contrast is worse than before, K /K ' = 6110/0.15 = 40,700, or

over ten times the true value. This illustrates how the errors increase as & and r/B

increase. The analyst could be badly misled from the results of this analysis by: (a)

overpredicting the productivity of the aquifer, (b) underestimating the leakage contri-

bution from the aquitard, and (c) concluding that the aquifer is radially inhomogeneous

when the apparent increase in permeability with distance is due to a misinterpretation

of the effects of leakage.

For the second example, we shall use the same two aquifer system as before,

except that now we shall assume that the hydraulic properties of both aquifers are
9 —A — 1

identical, i.e., K = K„ = 1800 gpd/ft and S = S = 2 x 10 ft . If the
1 2

^^
Si S2

aquitard properties are the same as before, then an observation well at r = 300 feet

would mean B = S^-, = r/B^ = r/B. = 0.1.

Under these conditions we shall assume that a pumping test is performed with

Q, = 200 gpm, and the drawdown data would now follow the curve for 3^, = r/B.^ =0.1

shown on Figure IV-7. This fact is again unknown to the analyst, and he might choose

to match the field results with the r/B solution as indicated on Figure IV-14. If he

does so, then at Sp = 10, s. = 3.6, and the permeability result for the aquifer would

be K = 2540 gpd/ft2 or about 40% too high.

The result might be acceptable, but a more serious problem now arises in that

one will have difficulty deciding what value of r/B to choose. The analyst who expects

the drawdown data to flatten may be tempted to choose an r/B value at the end of the

test period where he presumes the flattening is about to appear. However, the longer
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aquifer system. Obviously the problems of evaluating field data are further complicated

by the fact that leakage may occur not only from above but also from below. This will

tend to restrict further the applicability of the above two assumptions.

D. METHODS FOR DETERMINING HYDRAULIC CHARACTERISTICS OF MULTIPLE-AQUIFER SYSTEMS

USING PUMPING TESTS

We have seen that all methods currently used by hydrologists to evaluate the

results of pumping tests in leaky aquifers are based on certain simplifying assumptions

which are not generally applicable. Our new theory of flow in multiple aquifer systems

has eliminated the need for such assumptions and is therefore applicable to a wider

variety of field situations. This theory shows that the behavior of drawdown in each

layer is a function of several parameters, 6. . and r/B . .
, which depend on the hydraulic

characteristics of the aquitards as well as on those of the aquifers. As a result,

observation of drawdown in the pumped aquifer alone is not always sufficient to uniquely

determine the values of 3 and r/B. For example, Hantush's 6 method (see Appendix A,

Chapter V-A) is based on an analytical solution which we know is applicable at suffi-

ciently small values of time. Nevertheless, since the method relies entirely on drawdown

data from the pumped aquifer, it cannot be used to determine a unique value for 3- Our

theory indicates that one should be able to develop improved methods of analysis by

installing observation wells not only in the aquifer being pumped, but also in the

confining layers that enclose it. Indeed, as will be shown later, a series of obser-

vation wells in more than one layer is a prerequisite for any reliable evaluation of

aquitard characteristics.

The idea of placing observations wells in a low permeability aquitard (i.e.,

aquiclude) overlying a slightly leaky aquifer was originally proposed by Witherspoon

et al. [1962] in connection with underground storage of natural gas in aquifers. Their

purpose was to determine how effective will a given aquiclude be in preventing leakage

of gas from the intended underground storage reservoir to overlying sources of potable

water and to the ground surface. Using results obtained from a finite difference

simulation model, Witherspoon et al. were able to suggest a method for evaluating the

hydraulic diffusivity of an aquiclude by means of a pumping test. Their method relies

on the ratio between drawdown in the aquiclude and drawdown in the pumped aquifer, both

measured at the same radial distance from the pumping well.

A theoretical analysis of flow in aquicludes adjacent to slightly leaky aquifers

was first presented by Neuman and Witherspoon [1968] and has been reviewed above. This

new theory led to an improved method for determining the hydraulic diffusivity [i.e.

a' = k'/S '] of aquicludes [Witherspoon and Neuman, 1967; Witherspoon et al., 1967,

pp. 72-92] that is essentially similar to the method originally proposed by Witherspoon
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et al. [1962]. Since the improved version is based on the ratio between drawdown in

the aquiclude and the aquifer, we shall refer to it as the "ratio method." The ratio

method has already been applied to several gas storage fields in Illinois and Minnesota

and the results have proved to be very reliable. A detailed discussion of this method

will be given later.

Another method for evaluating the hydraulic diffusivity of a confining layer

was recently described by Wolff [1970]. In his analysis, Wolff assumed that at any

given radial distance from the pumping well, and at a sufficiently large value of

time, one can represent the drawdown in the pumped aquifer by a step function. Assuming

also that drawdowns in the unpumped aquifers remain zero, Wolff arrived at a set of type

curves which he recommended for aquitard evaluation.

Although this method gave satisfactory results for the particular site that was

investigated by Wolff, it seems to us that the step function approach may lead to dif-

ficulties when applied to arbitrary multiple- aquifer systems. Fundamentally, drawdown

in the pumped aquifer cannot be reliably represented by a step function unless a quasi-

steady state is reached within a sufficiently short period of time. This will happen

only if the transmissibility of the aquifer is large and if the observation wells are

situated at relatively small radial distances from the pumping well. In order to

minimize the effect of early drawdowns, the method further requires that the duration

of the pumping test be sufficiently long and that the vertical distance between the

pumped aquifer and the aquitard observation wells not be too small.

However, from our new theory of flow in multiple- aquifer systems, we now know

that at large values of time, the results in the aquitard may be seriously affected

by the influence of an adjacent unpumped aquifer. This is especially true for aquitard

observation wells that have been perforated close to such an aquifer (see Figure IV-6).

Thus, while the step function approach renders the method inapplicable at small values

of time, the assumption of zero drawdown in the unpumped aquifers introduces an

additional restriction at large values of time. In general, the method of Wolff [1970]

seems to be applicable only at intermediate values of time.

In the special case where the thickness of the aquitard is known, one can deter-

mine its diffusivity directly from the step function type curves, without the need for

a graphical curve matching procedure. Quite often, however, the effective thickness

of the aquitard is unknown. For example, the aquitard may contain unidentified or

poorly defined layers of highly permeable material that act as a buffer to the pressure

transient and also act as a source of leakage. Another possibility is that the aquitard

is situated below the pumped aquifer and that its lower limit has never been reached by

a drill hole. For such cases, Wolff recommended a procedure that requires graphical

matching of aquitard drawdown data with the type curves.

However, reference to Figure 10 in Wolff's paper [1970] will reveal that the
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intermediate portions of these type curves are essentially parallel, and therefore,

they cannot be matched uniquely with field results. On the other hand, neither the

early nor the late portions of the type curves can be used with confidence. Thus,

there may be an uncertainty when applying this method to real field situations.

Since all of the currently available methods appear to be limited in their

application, there is an obvious need for a new approach that would enable one to

determine the characteristics of multiple aquifer systems under a wide variety of

field conditions. We shall demonstrate that a rational basis for such an approach

is provided by our new theory of flow in multiple aquifer systems. Our discussion

will be divided into two parts: In the first part, we shall show that the ratio

method, which was originally developed for slightly leaky conditions (aquicludes) , can

also be used for very leaky conditions (aquitards) . It will be shown that the ratio

method offers many advantages over the step function approach and that it applies to

both confined and unconfined systems. In the second part of our discussion, we shall

recommend improved procedures for evaluating the transmissibility and storage coeffi-

cient of aquifers that are being supplied with leakage from above and/or below.

1 . Method for Evaluating Aquitards

To develop a method for determining the hydraulic properties of aquitards, we

shall consider first a two- aquifer system similar to that shown in Figure IV-1. We

have seen that a complete solution for the distribution of drawdo^im in such a system

is given by equations IV-7, IV-8, and IV-9. Each of these equations is dependent on

five dimensionless parameters 6,,, r/B^^, Pp-., ^l^')-i' ^"^^ t . Equation IV-8 for the

aquitard involves one additional parameter, z/H. '
. This large number of dimensionless

parameters makes it practically impossible to construct a sufficient number of type

curves that would cover the entire range of values necessary for field application.

For a set of type curves to be useful, one must usually require that they be expressed

in terms of not more than two independent dimensionless parameters.

One way of significantly reducing the number of parameters is to restrict the

analysis of field data to small values of time. In particular, we want to focus atten-

tion on those early effects that occur prior to the time when a pressure transient

reaches the unpumped aquifer. At such early times, the unpumped aquifer does not have

any influence on the rest of the system, and therefore drawdowns are independent of the

parameters B~, and r/B. . Furthermore, the aquitard behaves as if its thickness were

infinite, which simply means that the parameters r/B^ and z/H ' also have no influence

on the drawdown. Thus, the resulting equations will depend only on 6. , , t , and an

additional parameter.
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w =

S -z^
Sl

(IV-50)

In the pumped aquifer drawdown is then given by the asymptotic equation

^l^""' '^ = A^ erf c
11

Vy(4tjj^y-l)

dy

4t
Di

(IV-20)

In the aquitard the solution is

Sj^'(r, z, t)
4ttT,

4t,
Di

erf c
Jii^LZlVV
Vy(4tp^y-l)

dy (IV-23)

Theoretically equations IV-20 and IV-23 are limited to those small values of time which

satisfy the criterion

1.6 3

^D. ^<

11

(r/B^^)

(IV-21)

Another way of writing this criterion is

t <: 0.1
^s;»i''

^i'

(IV-51)

indicating that the limiting value of time is independent of radial distance from the

pumping well.

From a practical standpoint, the criterion given by (IV-21) or (IV-51) is

overly conservative. For example, reference to Figures IV-2 through IV-9 in Appendix

A reveals that the effect of the unpumped aquifer is felt in the rest of the system at

times that are always greater than that predicted by equation IV-21 (which is indicated

on these Figures by dashed vertical lines) . It should be further noted on these

figures that the effects of 3,., and r/B„. are negligible as long as the log-log curve

of drawdown versus time for the unpumped aquifer does not depart from its initial

ste.ep slope.
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This can provide a useful criterion when analyzing field data to determine

the time limit beyond which the asymptotic solutions may not be applicable. If an

observation well can be provided in the unpumped aquifer, a log- log plot of drawdown

versus time should enable the analyst to identify this time limit.

It should be recognized that there can be field situations where the above

procedure may not be applicable. For example, when the transmissibility of the un-

pumped aquifer is large compared to that of the aquifer being pumped, drawdowns in

the former will be too small to measure and one would not be able to determine the

time limit as outlined above. Another example where this procedure may fail is when

water levels in the unpumped aquifer are fluctuating during the pumping test due to

some uncontrolled local or regional effects. In such cases, a more conservative

estimate of the time limit can be established from drawdown data observed in one

of the aquitard wells. In general, the smaller the distance z between this well

and the pumped aquifer the more conservative is the time indicated by the above

procedure.

Having established a practical method for estimating the time within which

equations IV-20 and IV-23 are valid, we can now proceed to show how these equations

can be used for aquitard evaluation. It will be recalled that Hantush's equation

IV-20 by itself does not lead to a method

for determining a unique value of 6 from

field results. The same can be said of

equation IV-23 because it involves three

independent parameters, 81 i > t , and

t '. However, the usefulness of these

two equations becomes immediately evident

when one considers the ratio s^ ' /s. . This

means the ratio of drawdown in the aquitard

to that in the pumped aquifer at the same

elapsed time and at the same radial dis-

tance from the pumped well.

Figure VI-15 shows the variation

of s '/s. versus t ' for a practical range
1 i D

1

of values for t_, and Si i
• It may be seen

that at t^ =0.2 changing the value of 6

from 0.01 to 1.0 has practically no effect

on the ratio s. '/s.. The same is true as

t^ increases, and this is shown by
^

A
the additional results for t^ = 10 .

Fig. IV-15. Variation of s'/s
with t ' for
various values of
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If we now utilize our theory for slightly leaky aquifers, where s, ' is given by equation

IV-40 and s. is obtained from the Theis solution, we have in effect the special case

where 6, i =0. This is represented by the two solid lines on Figure IV-15. We also

examined the case where 3,-, = 10. and found that the values of s '/s. deviate signif-

icantly from those shown on this figure. These results thus indicate that the ratio

s.'/s. can be considered independent of 3. . for all practical values of t and for

B,, < 1.0. Since 6,-, is directly proportional to radial distance from the pumping well.

Its magnitude can be made less than unity simply by placing the observation wells close

enough to the pumping well. A quick calculation will show that a distance of less than

100 feet will probably be satisfactory for most field situations.

This brings us to the very important conclusion that the ratio method, which

we originally thought was restricted only to slightly leaky situations, can in effect

be used to determine the hydraulic dif fusivities of aquitards under arbitrary leaky

conditions. We therefore decided to adopt the ratio method as a standard tool in

evaluating the properties of aquitards.

The ratio method can be applied to any aquifer and its adjacent aquitards (above

and below) in a multiple-aquifer system (see sketch on Figure IV-16) . This method con-

sists of measuring drawdown in the aquifer s and drawdown in either of the aquitards s',

both at the same time and at the same radial distance from the pumping well. As has

been discussed above, one can use our slightly leaky theory (see equations IV-34 and

IV-40) to obtain a family of curves of s'/s versus t ' for values of t ranging from
10

0.2 to 10 . This is shown in Figure IV-16. These curves have been prepared from

tables of values that were published by Witherspoon et al . [1967, Appendix G]

.

In the ratio method, one first calculates the value of s'/s at a given radial

distance from the pumping well, r, and at a given instant of time, t. The next step is

to determine the magnitude of t for the particular values of r and t at which s'/s

have been measured. When t < 100, the curves in Figure IV-16 are sensitive to minor

changes in the magnitude of this parameter and therefore a good estimate of t is desir-

able. When dimenslonless time in the aquifer is greater than 100, these curves are so

close to each other that they can be assumed to be practically independent of t . In

this case, even a crude estimate of t will be sufficient for the ratio method to yield

satisfactory results. A procedure for determining the value of t from drawdown data

in the aquifer will be discussed later in connection with methods dealing with aquifer

characteristics.

Having determined which one of the curves in Figure IV-16 should be used in a

given calculation, one can now read off a value of t ' corresponding to the computed

ratio of s'/s. Finally the diffusivity of the aquitard is determined from the simple

formula
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a' = -^ tp' (IV-52)

It is seen in Figure IV-16 that when s'/s is less than 0.1, the value of t
'

that is obtained by the ratio method is not very sensitive to the magnitude of s'/s.

As a result, the value of a' that one calculates from equation IV-52 depends very

little on the actual magnitude of the drawdown in the aquitard. Instead, the critical

quantity that determines the value of a' at a given elevation z is the time lag, t,

between the start of the test and the time when the aquitard observation well begins to

respond. This is very important because it means that in using the ratio method one

need not worry about having extremely sensitive measurements of drawdown in the aquitard

observation wells. A conventional piezometer with a standing water column will usually

give information that is sufficiently accurate for most field situations.

To evaluate the permeability and specific storage of an aquitard from its hydrau-

lic diffusivity, one of these quantities must first be determined by means other than the

ratio method. Experience indicates that permeability may vary by several orders of mag-

nitude from one aquitard to another, and even from one elevation to another in the same

aquitard. A much more stable range of values is usually encountered when dealing with

specific storage. For these reasons, it is recommended that if core samples are available

S ' be measured in the laboratory. In many cases, such samples will not be available, and

one will have to estimate S ' from published results on similar sediments. When an averagi

value for S ' has been determined, K' is easily calculated from
s

K' = a' S
' (IV-53)

s

We also studied the effects of aquitard heterogeneity and anisotropy on the value

of K' that is obtained by the ratio method at a given elevation z. In our investigation,

we used the finite element method to examine the behavior of a two-aquifer system under

the following two conditions: (a) the aquitard is a homogeneous anisotropic layer with

a horizontal permeability that may be as much as 250 times greater than the vertical,

and (b) the aquitard consists of three different layers each of which is homogeneous and

anisotropic. The results of this study indicated that for homogeneous, anisotropic

aquitards, the ratio method will always give a value of K' which corresponds to the

vertical permeability of the aquitard. In the case of a heterogeneous aquitard, K' is

simply the average vertical permeability over the thickness z. If there are N layers

of thickness H ar

the average value

of thickness H and vertical permeability K inside this interval, then K' represents

K' N (IV-54)
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It is well known that at early values of time, drawdown in an unconfined aquifer

can safely be approximated using the Theis solution provided that the storage coefficient

is replaced by specific yield. At later values of time, drawdown may be affected by

delayed yield and may therefore deviate from the Theis solution in a manner similar to

that of confined leaky aquifers. This suggests that if the ratio method is applicable

to aquitards that are adjacent to confined leaky aquifers, it should also be applicable

to situations where the pumped aquifer is unconfined. This conclusion is further

supported by the fact that the ratio method depends less on the actual values of draw-

down in the aquifer than on the time lag observed in the aquitard. We were able to

obtain data from Wolff [1970] for a pumping test where observation wells were placed

in a confining layer underneath a water table aquifer. We analyzed these data using

the ratio method and the results are in excellent agreement with those obtained by

Wolff.

In showing that our slightly leaky theory is applicable to the so-called "leaky"

aquifer, our previous discussion was restricted to a two-aquifer system. By now, however,

the reader will recognize that such a restriction is not necessary and that the ratio

method is actually applicable to arbitrary multiple-aquifer systems. As an example, let

us consider a three-aquifer system such as in Figure IV-8. At small values of time,

drawdown in the pumped aquifer is given by equation IV-25, and in the underlying aquitard

by equation IV-28. These equations are completely analogous to (IV-20) and (IV-23) except

that 6^. has been replaced by (3-, + Pon) > where now the first 6 parameter represents

leakage from below and the second represents leakage from above. Thus, in order for the

ratio method to be applicable, one only needs to arrange his observation wells such that

the sum of the two values of 3 is less than unity (i.e., 3^., + 6^« < 1). From a practical

standpoint, a radial distance of less than 100 feet from the pumping well will again be

satisfactory for most situations that one is likely to encounter in the field.

In summary, it may be helpful to stress once again the following features of the

ratio method:

(1) The method applies to arbitrary leaky multiple-aquifer situations.

(2) The pumped aquifer can be either confined or unconfined.

(3) The confining layers can be heterogeneous and anisotropic. In this case,

the ratio method gives the average vertical permeability over the thickness

z of the aquitard being tested.

(4) The method relies only on early drawdown data and therefore the pumping

test can be of relatively short duration.

(5) The drawdown data in the unpumped aquifer or in the aquitard provide an

insitu indication of the time limit at which the ratio method ceases to

give reliable results.

(6) Since the method is more sensitive to time lag than to the actual magnitude
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of s'/s, the accuracy with which drawdowns are measure in the aquitard

is not overly critical.

(7) The method does not require prior knowledge of the aquitard thickness.

(8) The ratio method is very simple to use and it does not involve any

graphical curve matching procedures. This is an advantage because

(a) curve matching is often prone to errors due to individual judgment,

and (b) a more reliable result can be obtained by taking the arithmetic

average of results obtained from several values of the ratio s'/s.

2. Method for Evaluating Aquifers

When the pumped aquifer is slightly leaky, one can evaluate its transmissibility

and storage coefficient by the usual procedures based on the Theis equation. When

leakage is appreciable, these procedures will not always yield satisfactory results.

Alternative methods for analyzing the results of pumping tests in leaky aquifers were

proposed by Jacob [1946] and by Hantush [1956, 1960a] and are outlined in Appendix A of

this report, (Chap. V-A). Still another method based on the r/B solution has recently

been proposed by Narasimhan [1968] . All of these methods rely on drawdown data from the

pumped aquifer alone. Their purpose is to determine not only the properties of the aquife

but also the so-called "leakage factors" r/B and 3 which depend on the characteristics of

the confining layers as well as on those of the aquifer. We have shown earlier that

these methods have limited application and that they can often lead to erroneous results.

Having introduced the ratio method as a means of evaluating aquitards, the only

remaining unknowns that need to be determined by other than this method are the aquifer

transmissibility T, and the storage coefficient, S. When the aquifer is leaky, the use

of methods based on the Theis solution will lead to errors whose magnitude is a function

of S and r/B. Reference to Figures IV-2 through IV-5, IV-9 and IV- 10 will reveal that

the smaller are the values of 3 and r/B, the less the drawdowns in the pumped aquifer

deviate from the Theis solution. Therefore, the less are the errors introduced by such

methods. At this point, it is important to recognize that although 3 and r/B have been

termed "leakage factors", their magnitude does not necessarily reflect the amount of

water that leaks into the aquifer. In fact, both of these parameters are directly

proportional to r, which simply means that their magnitude in a given aquifer varies

from nearly zero at the pumping well to relatively large values further away from this

well. This implies that the extent to which leakage can affect the behavior of the

drawdown in any given aquifer is a function of radial distance from the pumping well.

Thus, the closer one is to this well, the smaller are the deviations of drawdown from

the Theis curve. On the other hand, the rate of leakage is obviously greatest near

the pumping well where vertical gradients in the aquitard are largest and diminishes as
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the radial distance from this well increases. Therefore in a given system, Q and r/B

increase with radial distance while the actual rate of leakage decreases . The term

"leakage factor" is obviously misleading and in our opinion should be considered a

misnomer.

At first glance, it may appear as if we were faced with a paradox: the greater

is the leakage, the less are the deviations from the non-leaky Theis solution. However,

a closer examination of the flow system will show that there is a simple physical

explanation for this phenomenon. Referring to the cross-sections shown on Figures IV-11

through IV-IA in Appendix A, the reader will recognize that while vertical gradients in

the aquitard do not vary appreciably with radial distance from the pumping well, the

same cannot be said about drawdown in the pumped aquifer. As a result, the rate of

leakage per unit area relative to this drav/down is negligibly small in the immediate

vicinity of the pumping well, but it becomes increasingly important at larger values

of r. In addition to this, the water that leaks into the aquifer at smaller values

of r tends to act as a buffer to the pressure transient. This transient cannot propagate

as fast as it otherwise might have had there been no increase in aquifer storage. The

effect is to further reduce the drawdown at points farther away from the pumping well.

The net result is a situation where larger values of r are associated with less leakage

but also with greater deviations from the Theis curve.

This brings us to the important conclusion that it is possible to evaluate the

transmissibility and storage coefficient of a leaky aquifer using conventional methods

of analysis based on the Theis solution. The errors introduced by these methods will

be small if the data are collected close to the pumping well, but they may become

significant when the observation well is placed too far away. This means that a

distance drawdown analysis based on the Theis curve is not generally applicable to

leaky aquifers and should therefore be avoided whenever possible.

Ideally, the values of T and S should be evaluated using drawdown or build-up

data from the pumping well itself because here the effect of leakage is always the

smallest. We recommend this approach whenever the effective radius of the pumping well

is known (e.g., wells in hard rock formations). However, when a well derives its water

from unconsolidated materials, its effective radius usually remains unknown due to the

presence of a gravel pack. In these situations the above approach can still be used to

evaluate T, but it cannot be used to determine S. As a general rule, early drawdown

data are affected by leakage to a lesser degree than are data taken at a later time.

We therefore feel that in performing the analysis, most of the weight should be given

to the earliest data available, provided of course that there is confidence in their

reliability.

Once S and T have been determined, one can calculate the dlmensionless time at

any given radial distance from the pumping well by the simple equation
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CHAPTER V. -IE.: PUWIIC TESTS

-''- ri£_i --—-1-5 tests were per:;—=; . 5.3 "=rr :r riis trrreszlzzzlcm., ro garhsr

Oxnarc basin has ;=e- subjected t: sea varer i-itrusioii aver a period tf vears ^see

Chapter III) we wanted zz detemine hc^w effectively the sculzszcs :f this basi- are

A. LOCATION

The State :f California, Deparrsent tf *«3.ter Ssscmrces had previotsly ijrrestigat;

the Gxnard sea water irtnisicn probleE and had trtistmcted several ifslls at varitris Itta-

ti?ns in the basin. Tr.e particular Ictaticn described belos was selected f :r rur field

studies because a large capacity pusping well (r?Z-l) was available tc trrdute frrt: tte

Oxnard aquifer and vas surrctmded by several aquifer observatian wells. The Iccatiru

lined channel excavated by the .entura County r_ir-d l<s.trcl District. Ivr uuthers

desigtiate this well: State Veil So. 15/22B-22J5 and field n.;n2:er :?I-1.

lust north and slightly west of this well, Calif tm^e letartnent :f "-"£t=r

ReS'Curces tersonnel in June 196S drilled five observaticn htles. rhe~ tleied l =1;

Eeters lie en the west bank of the flc-cd ccntrol channel (Fignre V—2).

B. CONSTRUCTION MD CtVPLETKM ICTHODS

Drilling rf the observation holes began June 11, 196E: rrnstruttim rf pie:

ended June 29. A ~-~ ' -" — g 1.5C^0 rctaxv rxE drilled all holes. The rig used a 5 :~



Fig. V-1. General location map of Oxnard field pumping test.
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•PIEZOMETER
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(OPEO-4)

IN/22W-22H5
{OPEO-3)

PUMPING WELL
"IN/22W-22J5

(OPE -I)

First Hole

Fig. V-2. Location of piezometers used
in field pumping tests.

A 6 3/4-inch tricone, soft-formation rock bit was used to drill the first hole.

To substantiate the lithologic log prepared during drilling, the Go-Western Company ran

an electric log and a copy is reproduced in Figure V-3.

After correlating lithologic and electric logs, the well was equipped with two

piezometers: No. 1 in the upper (Oxnard) aquifer, and No. lA in the lower (Mugu) aquifer

.

These correlations also indicated the depths where cores of the aquitards could be taken

in drilling the second observation hole.

The completed well contained a neat-cement plug from the bottom at 370 ft to 260

ft, a gravel pack from 260 to 226 ft, and a second neat-cement plug from 226 to 126 ft.

A second gravel pack was placed from 126 to 101 ft, and the remainder of the- hole was

cemented to the surface.

Piezometer 1 passed through the upper cement plug and consisted of 116 1/2 ft

of nominal 2-inch diameter plastic pipe (Schedule 80 PVC, Type 2) fastened to a 3 1/2-
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foot well point. Piezometer lA passed through the upper two cement plugs into the

lower gravel pack, and consisted of 235 1/2 ft of blank pipe fastened to a second

3 1/2-foot well point. The well points not only provided communication with the

aquifers; they also added weight to the plastic tubing. Twenty-foot sections of

tubing were connected by Ventura flush joints with modified acme threads.

After the observation hole had been drilled, the emplacement of piezometers

generally followed a set procedure. With the bottom section cemented off, piezometer

lA was positioned and the drilling mud was displaced with water to allow the gravel to

settle more easily. This water circulation continued slowly and was directed down the

tubing and up the annulus while gravel (nominal 3/8-inch, well rounded) was shoveled

in the hole. After the intervening cement plug was set, the second piezometer 1 was

installed in a similar manner.

Second Hole

The second observation hole was drilled to 227 ft in the same manner as the

first using a 9-inch tricone, soft-formation rock bit. Drilling was continuous except

Table V-1. Data on Observation Holes and Piezometers

Hole Data



for two intervals, 60. A to 104.9 and 198.0 to

227.4 ft, which were cored using a Pitcher

Barrel coring tube (Figure VI-2). The hole

was reamed each time after coring using the

9-inch bit. Piezometer 2 for this well was

opened in the lower aquitard and consisted

of 225 ft of 4-inch steel pipe (1/8-inch

wall) with the bottom end sealed off by a

flat plate. The bottom foot (224-225 ft)

was slotted by cutting vertical perforations,

1/8-inch wide and 2 1/2-inches long, eight

slots around in a set and three sets per

foot. Gravel packing followed the same

procedure as described earlier but ex-

tended only to 223 ft, i.e., only one

foot above the top of the perforations.

A 1-foot sand pack was placed on top of

the gravel followed by a short cement

plug. These precautionary steps were

designed to prevent plugging the short

Fig. V-3. Electric log from
first exploratory
hole.

gravel pack. After the cement plug had set, the balance of the annulus was filled with

cement. This procedure worked well on all piezometers but No. 2, which did not perform

satisfactorily.

Third Hole

The third observation hole was drilled to 205 ft and equipped with a 4-inch

piezometer in the same manner as the second hole. The perforations extended from 204

to 205 ft, and the gravel pack from 203 to 205 ft. Piezometer 3 was also open in the

lower aquitard.

Fourth Hole

The fourth observation hole was drilled to 95 ft and equipped with a 4-inch

piezometer in the same manner as the second hole except that a second smaller piezometer

was placed in the annulus. Piezometer 4 was open to the upper aquitard from 94 to 95

ft and the gravel pack was placed from 93 to 95 ft.

After filling the annulus up to 58 1/2 ft with cement, 2-inch plastic pipe with

a 3 1/2-foot well point was positioned opposite the semiperched aquifer that overlies
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the Oxnard (Fig. V-3) . In addition, the bottom 3 1/2 ft of plastic pipe were also

perforated with four 3/32-inch diameter holes per set and eight sets per foot, alter-

nating at 90° from each other. Piezometer 4A was completed by gravel packing from

58 1/2 to 51 1/2 ft and cementing to the surface in the usual manner.

Fifth Hole

The fifth observation hole was drilled to 84 ft and equipped with a 4-inch

piezometer in the same manner as the second hole. Piezometer 5 was open to the upper

aquitard from 83 to 84 ft and the gravel pack was placed from 82 to 84 ft.

Development

Airlift methods were employed in developing the piezometers. A trailer-mounted

compressor provided the necessary air supply and water was added to those piezometers

in the aquitards that produced too slowly. By positioning a 1/4-inch air hose opposite

the perforated intervals, a satisfactory communication was established and the gravel

packs were stabilized.

C. ANALYSIS OF PUMPING TEST RESULTS

Two pumping tests were performed in the field. The purpose of these tests was

twofold: (a) to determine the hydraulic characteristics of the Oxnard aquifer and the

confining layers that lie above and below using the new approach that was outlined in

Section D of Chapter IV, and (b) to confirm the applicability of our new theory to the

multiple-aquifer system of the Oxnard Basin. The five layers in which piezometers had

been installed can be viewed as a three-aquifer subsystem of the Oxnard Basin, similar

to the one shown on Figure IV-8. At the center of this subsystem is the Oxnard aquifer

from which water was withdrawn at a constant rate, Q. The upper aquitard separates the

pumped aquifer from the unpumped perched aquifer above. The lower aquitard lies

between the Oxnard and the unpumped Mugu aquifer below.

As described earlier, seven new piezometers were installed to monitor the res-

ponse at various elevations in the subsystem. Of these, two piezometers were open in

the upper aquitard (Nos. 4 and 5), two in the lower aquitard (Nos. 2 and 3), and one

piezometer in each aquifer (No. 1 in the Oxnard, No. lA in the Mugu, and No. 4A in the

perched zone). Unfortunately, piezometer 2 in the lower aquitard became clogged before

the pumping tests started and had to be abandoned. Four additional piezometers (22H2,

22H5, 22K2, and 23E2) were used to monitor water levels in the Oxnard aquifer at radial

distances ranging between 502 and 1060 ft.
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Ideally, the seven new piezometers should have been arranged along a circular

arc with its center at the pumping well, so as to give responses at various elevations

at only one unique value of r. However, this was not possible under the local conditions

and we therefore had to design the well field according to the scheme shown in Figure

IV-2.

Water levels in these observation wells were measured mainly with the aid of a

steel tape and with a fluid-conductivity probe suspended on an electric cable. The

accuracy of the readings with both instruments was approximately ± 0.01 foot. Automatic

Stevens recording devices were originally installed in piezometer 3 and some of the

Oxnard observation wells to monitor water levels prior to the first pumping test. These

recorders were not used during the test itself. Appendix B gives a tabulation of draw-

down data from the first pumping test that were used in following analyses.

1 . Results of First Pumping Test

For several months prior to the first

pumping test, water levels everywhere in the

Oxnard basin were continuously rising. Figure

V-4 shows the variation in fluid levels in each

part of the three-aquifer subsystem during por-

tions of the two-month period prior to the

test. Initially, water levels in the Oxnard

and Mugu aquifers were rising steadily at a

rate of 0.3 to 0.5 feet per day. A similar

rise occurred in the lower aquitard which is

situated between these two aquifers. In the

perched aquifer the rise was relatively slow

(less than 0.04 feet per day) , while in the

upper aquitard the rates progressively,

increased from top (i.e. near the perched

zone) to bottom (i.e. near the Oxnard).

Toward the second half of February,

1970, the water levels started to stabilize,

and in March, these levels were nearly

static. These conditions were ideal for

a pumping test, and on March 6, 1970 the

first test began. With the exception of

a 25-minute power failure that occurred

on March 11, 1970, the pump continued to

- 5-
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Fig. V-4. Fluid levels in

piezometers prior

to first pumping
test
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Fig. V-5. Fluid levels in Oxnard piezometers
during first pumping test

operate at a constant rate of approximately 1000 gallons per minute for almost a month.

The test ended on April 3, 1970, when the pump was shut off and the water levels were

allowed to recover. Appendix B lists the drawdowns in all piezometers for the entire

period of the first test. Figure V-5 shows the response in the Oxnard aquifer at

various radial distances from the pumping well. Piezometer 1, which is nearest to the

pumping well, demonstrates an anomalous behavior during the first 6 minutes of pumping.

This is apparently due to a surging effect in the pumping well. At about 6,000 minutes,

the entire basin started experiencing a general fall in water levels probably due to the

beginning of intermittent pumping for irrigation at this time of the year.

We have shown in Section D of Chapter IV that in order to obtain the best esti-

mate for transmisslbility and storage coefficient in an aquifer, one should analyze the

early drawdown data from a piezometer nearest the pumping well using a method based on

the Theis solution. However, the early drawdowns from piezometer 1 cannot be used to

obtain such a result. The rest of these data lie on an almost flat curve that cannot

be used to match to the Theis solution without some uncertainty. In fact, none of

the curves in Figure V-5 has a sufficiently well defined early portion to eliminate

such uncertainties. An example of this is shown in Figure V-6 , where the drawdowns

from piezometer 22H2 are matched to the Theis solution. One notes immediately that

the early data are above the Theis curve for some reason, and after about 100 minutes,
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Fig. V-7. Plot of drawdown data for Oxnard piezometer
22H2 according to Jacob's method

where s _ and r are in feet, is in gallons per minute (gpm) , T is in gallons per day

per foot (gpd/f t) , and S is a dimensionless quantity. The results of the calculations

are given in Table V-2

.

Table V-2. Results for Oxnard aquifer using Jacob's semi-log method

Well
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Fig. V-9. Response of piezometers in lower aquitard
(No. 3) compared to that of Oxnard (No. 1)

and Mugu (No. lA) aquifers during first
pumping test

curve and the Theis curve. This simply means that as r increases, the magnitude of T

should become more and more exaggerated, which is exactly what we see on Table V-2.

With regard to errors in S, the shifting of field data as indicated on Figure

V-8 may either be to left or to the right. Thus, the effect on the calculated values

of S is not predictable. This also is seen in Table V-2. With this in mind, we

decided to select the results from piezometer 1 of T = 130,600 gpd/ft and S = 1.12 x
-4

10 as being most representative of the Oxnard aquifer, at least in the area of the

pumping test.

Having estimated the properties of the pumped aquifer, we shall now consider

the results from other parts of our three-aquifer subsystem. Figure V-9 shows the

response at one particular point in the lower aquitard (No. 3) as well as in the Oxnard

above (No. 1) and the Mugu below (No. lA) . Figure V-10 shows the response at two

different elevations in the upper aquitard (Nos. 4 and 5) as well as in the overlying

semiperched aquifer (No. 4A) . Since piezometer 1 is located farthest from the pumping

well, we do not have the response in the pumped aquifer directly below the piezometers

where drawdowns in the upper aquitard were measured. However, from distance-drawdown

curves in the Oxnard aquifer and from the behavior of piezometer 4 we concluded that

the aquifer response was approximately as shown by the dashed curve on Figure V-10.
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Fig. V-10. ResDonse of piezometers in upper aquitard

(Nos. 4 and 5) and semiperched aquifer

(No. 4A) during first pumping test

It should be remembered that the new ratio method described above for evaluating aqui-

tards is more sensitive to the time lag than to the actual magnitude of drawdown in the

aquifer. For this reason, the dashed curve in Figure V-10 can be considered sufficiently

accurate for our purposes. It should be noted that the general form of the curves in

Figures V-9 and V-10 and their relationships to each other is similar to that of the

theoretical curves on Figure IV-2 through IV-5. This is encouraging because it suggests

that the particular multiple-aquifer system with which we are dealing behaves at least

qualitatively as our theory would predict. Therefore, the ratio method should be

applicable to this system, and we can proceed to evaluate the hydraulic properties of

the two aquitards that enclose the Oxnard aquifer.

To evaluate the lower aquitard, we shall determine the ratio s'/s at two early

values of time, t = 80 minutes and t = 200 minutes. At t = 80 minutes, one can read

on Figure V-9 that s' = 0.078 and s = 6.6 feet. The ratio is simply

0.078
6.6

= 1.18 X 10
-2
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To obtain t , we first rewrite equation V-4 as

t^ = '''
I

^°"' "^
(V-5)

r S

where T is in gpd/ft, t is in minutes, and r is in feet. Then, using the known values

of T and S and noting from Table V-1 that at piezometer 3, r = 81 feet, we can calculate

^ _ (9.28 X 10"^) (130,600) (80) _ „ ^ .^^
D

~
2 -4 - i.J/ X iu

(81) (1.12 X 10 )

Referring to Figure IV-16, we find that these values of s'/s and t correspond to

t ' = 0.086. From the definition of t ', one can verify the formula

2

-— = 1.077 X 10^ tj^' ^ (V-6)

s

where K'/S ' is in gpd/ft, z is in feet, and t is in minutes. We note on Table V-1

that for piezometer 3, z = 6 feet and therefore

r ^ (1-077 X loS (0-086) (6)i __ ^_^^ ^ ^^2 ^^^/^^
o ( ou)
s

To compare this with the laboratory results, it is convenient to express K'/S ' in

2
^

cm /sec, in which case the formula becomes

/;=15.48t^'4 (V-7)

s

From the data for piezometer 3, one then has

K' ^ (15.48) (0.086) (6)^ ^ ^^^^ ^ ^^-1 cm^
S

'

(80)
'

sec
s

At t = 200 minutes, one can read on Figure V-9 that s' = 0.52 and s = 7.2 feet, from

which

— = -^^ = 0.0722
s 7.2

Using equation V-5
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(9.28 X 10 ^) (130.600) (200) 3
tp, -

2 -4 J.J X iu
" (81) (1.12 X 10 )

and therefore Figure IV-16 indicates that

V= 0-1^5

Equations V-6 and V-7 give

K' (1.077 X 10^) (0.175) (6)^ _ _. ..2 ,..
^-r =

^200)
=3.39x10 gpd/ft

s

and

^ = (15.48) (0 175) (6)^ ^ ,_gg ^ ^0-1 cm!
S

' (200) sec
s

Here, we note the calculated values of K'/S ' decrease as t increases. The most reliable
s

result is obtained at small values of time, and we shall therefore adopt

2

~T = 4.17 x 10^ gpd/ft = 5.99 x lO"-"- -^^
S

^^ sec
8

as being representative of the top 6 feet in the lower aquitard.

A similar analysis can be made on the upper aquitard, assuming that the response

in the pumped aquifer can be represented by the broken curve shown in Figure V-10. For

piezometer 4 at t = 400 minutes, we find s' = .095 and s = 12.0 feet, from which

si = 0-095 = 7 92 X lO"^
s 12.0

'-^
""

"

The magnitude of t at r = 72 feet is obtained using (V-5)

.

^ - (9.28 X 10"^) (130.600) (400) _ « .. ^ ^^
D

~
2 -4 - o. J3 X lu

(72) (1.12 X 10 )

From Figure IV-16. t ' = 0.075 and using equations V-6 and V-7 for z = 11 feet, one has

^ ^ (1.077 X loS (0-075) (11)^
__ 2.,, , ^o^ gpd/ft

Sg (400)

and
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K' ^ (15.48) (0.075) (11)'

S
'

(400)
3.51 X 10

-1 cm
sec

It is interesting to note that had we used the drawdown in piezometer 1 as shown on

Figure V-9 instead of that indicated by the dashed line in Figure V-10, we would have

obtained a value of

|V = 2.7 X 10^ gpd/ft
s

which is very close to the original result. This shows how insensitive the ratio methoc

is to the actual magnitude of the drawdowns. Again using the data on Figure V-9, it car

2
be shown that at t = 800 minutes, K'/S ' for piezometer 4 is 2.44 x 10 gpd/ft, which ir

this case, is the same as the result computed at t = 400 minutes.

Turning to piezometer 5, where z = 22 feet, one can determine that at t = 3,000

minutes, s' = 0.041 and s = 13.8 feet. One can quickly determine that K'/S ' = 1.02 x2-12 ^

10 gpd/ft, or 1.47 X 10 cm /sec. This is about half the value that was obtained fron

piezometer 4 and suggests that the average diffusivlty of the aquitard decreases as the

thickness of the section being tested increases. This is to be expected because the

thicker the section under consideration, the more chance there is that it will include

clay layers of low permeability and high specific storage. Consequently, the effect is

to reduce the overall vertical diffusivlty of the aquitard. The results that were

adopted as representative for both aquitards are summarized in Table V-3.

Table. V-3. Results for hydraulic diffusivlty of

aquitards from first pumping test

Layer
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which is more than one million times the values that were obtained for the aquitards

that enclose this important water source.

2. Results of Second Pumping Test

After the completion of the first pumping test on April 3, 1970, the producing

well was left idle for a period of 50 days. During this time, the basin was pumped

intensively for irrigation and therefore water levels in the observation wells were

unable to recover. Figure V-11 shows the vari-

ation in fluid levels in each part of the three-

aquifer subsystem during the last four days prior

to the second pumping test. It may be seen that

in the Oxnard aquifer the water levels were

fluctuating with a frequency of approximately

one cycle per day, and with a maximum amplitude

of more than one foot. Piezometer 4 was the

only observation with a stable water level when

the producing well was started again on May 22,

1970. From May 22 through May 31, 1970, the

pump was operated at a constant rate of approx-

imately 800 gallons per minute.

Figure V-12 shows the response in the

Oxnard aquifer at various radial distances

from the pumping well. It is clear from this figure that the results were strongly

affected by disturbances that originated outside the area of the test, and therefore

these data do not yield reliable results. On the other hand. Figure V-13 shows that,

despite the variable behavior in the aquifer, the response in the lower part of this

subsystem was essentially similar to that observed during the first test. To see how

insensitive the ratio method is to such disturbances, let us again calculate the

diffusivity of the lower aquitard using data from piezometer 3. At t = 150 minutes,

one can observe on Figure V-13 that s' = 0.17 and s = 6.3 feet, so that the ratio

becomes

WELL NO I (OXNARD AOU(FERI

Fig. V-11. Fluid levels in

piezometers prior
to second pumping
test.

0.17
6.3

2.7 X 10

Using equation V-5 and adopting the values of T and S from the first test, we obtain

^ _ (9.28 X 10~^) (130,600) (150) _ -. .^ ^ -.r.2

D
~

2 -4 - i.DZ X xu
"

(100) (1.12 X 10 )
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test. Obviously, the results of the first test appear to be more reliable and will

therefore be adopted as being representative of the actual conditions in this part of

the Oxnard basin.

3. Determination of Aquitard Properties Using Field and Laboratory Results

Having determined the average values of K'/S ' for both aquitards as given in

Table V-3, the next step is to evaluate the permeability, K', and the specific storage,

S ' , in each aquitard. To do this, we shall utilize the laboratory measurements that

are described below in Chapter VI. Referring to Figure VI-11, it is clear that per-

meabilities in the confining layers vary over a range of three orders of magnitude, and

possibly more. Since the tests were conducted only on a limited number of samples, it

would be practically impossible to obtain a representative average permeability from

these data for either of the two aquitards. On the other hand, a relatively small range

of values is obtained from the laboratory results for S ' , as will be shown below.^ s

Let e be the void ratio and a , the coefficient of compressibility at any given

elevation in the aquitard. If y is the unit weight of water, then the coefficient of
w

consolidation, c , is given by

c = K'-^-^^i-^ (V-8)
V a Y

V w

and is equivalent to the hydraulic diffusivity

a' = f-r (V-9)

s

comparing equation V-8 and V-9 shows that specific storage is related to e, a , and y

according to

a y
S • = ^^^ (V-10)
s 1 + e

2
If a is given in cm /kg, and S ' in reciprocal feet, then (V-10) becomes

S3' = 3.048 X 10-2 ___v_
^^_^^^

3
where y was taken to be 1.0 g/cm . This last equation can now be used to obtain S ' fr

w s

measured values of a and e as given in Table VI-8.

The results of such calculations are given in Table V-4 where it is seen that

the variation in specific storage is much less than that observed for c and K' (see
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Table V-4. Values of specific storage for aquitard
samples calculated from laboratory data

Layer



evident that the coefficient of storage is not as sensitive to changes in lithology as

is permeability.

Using S^' = 1.0 X 10 ft for the lower aquitard and 2.4 x 10~ ft""*" for the

upper aquitard, we can now convert the values of hydraulic diffusivity given in Table

V-3 to obtain permeability from

s

The results are given in Table V-5.

(V-12)

Table V-5. Hydraulic properties of aquitard layers

Layer



found for high permeability aquifers, but the Important thing to note is that S is two

orders of magnitude less than S ' in the aquitards above and below it. In other words,

for the same change in head, a unit volume of aquitard material can contribute about 100

times more water from storage than a similar volume in the aquifer. This further points

to the necessity for considering storage in the aquitards when evaluating leaky aquifers

(see Chapter IV-6)

.

iri

I
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CHAPTER VI. LABORATORY INVESTIGATIONS

J. K. Mitchell, J. A. Greenberg, J. H. Hardcastle, and D. T. Y. Wan

A. INTRODUCTION

As has been discussed in Chapter V, a series of core samples of the aqultard

sediments were collected during the drilling of the second observation hole (see Figure

V-2) which later was equipped as piezometer 2. These samples were needed for the lab-

oratory investigation phase of this study. Undisturbed samples were taken from 60 ft to

the top of the Oxnard aquifer at 105 ft and from the bottom of the Oxnard at 198 ft to a

total depth of 228 ft. Details of the drilling conditions are given in Section B of

Chapter V.

This report includes the results of laboratory measurements of the physical,

compositional, and hydrological properties of the core samples taken above and below the

Oxnard aquifer as well as the changes in these properties which result from leaching the

sediments with sodium chloride solutions in the laboratory. Part of the data presented

was published previously in "Physical and Hydrological Properties of the Aquitard Layers

in the Oxnard California Area" by James K. Mitchell [1969]. These data are included

herein along with additional results in order to facilitate the analysis of the response

of the sediments to leaching by sea water, and to provide the complete results of the

laboratory program under one cover. Laboratory methods are not described in detail in

this report except where methods were used which have not been standardized. However,

unless otherwise indicated, standard soil mechanics and soil science methods were used;

e.g., Lambe [1951], American Society of Agronomy [1965]. Johnson, et al . [1968] present

a detailed description of soil mechanic test methods and their application to the study

of the physical and hydrological properties of water-bearing deposits in subsiding areas

of Central California.

B. GENERALIZED STRATIGRAPHIC SECTION AND SAMPLING OPERATIONS

The general sequence of strata as given by the driller's log for first observation

hole is shown in Figure VI-1. Fine-grained sediments* were reported between depths of

The designations "clay" and "sandy clay" are those of the driller. The results of

classification tests presented subsequently indicate that the fine-grained layers

contain very little clay, and are predominantly silt.
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Fig. VI-1. Driller's log for
first observation
hole

about 65 ft and 105 ft and between 198 ft and

246 ft, which marked the top of the Mugu aquifer.

Fine-grained materials were encountered again

below a depth of 330 ft. Two sample tubes were

recovered from first observation hole at depths

of 350.0 and 352.8 ft and 352.8 ft to 355.6 ft.

These samples were taken primarily to test the

suitability of the sampling equipment and pro-

cedures proposed for the detailed sampling

scheduled in the second observation well.

Undisturbed samples were taken in the

second observation hole in the fine-grained

material between depths of 60.4 ft and 104.9

ft and 198.0 ft and 227 ft. The upper set of

samples are representative of the fine-grained

material which serves as the confining member

above the Oxnard aquifer. The deeper samples

were presumed to be representative of materials

in the aquitard separating the Oxnard and Mugu

aquifers. Subsequent study of these samples

indicated that these deeper samples were almost

entirely cohesionless (see Figure VI-3) , and

thus only limited information could be obtained

in this study relative to the properties of any clay beds that may separate the Oxnard

and Mugu aquifers. The bore hole was drilled through the sand formations and between

points of sampling in the fine-grained materials using a rotary drill and bentonite

drilling mud. Undisturbed samples were obtained using a Pitcher sampler. The operation

of this device, which is particularly well suited for sampling in deposits containing

successive layers of soft and hard consistency, is shown in Figure VI-2.

The thin-walled tube is suspended from the rotating cutter barrel, and drilling

fluid circulates down through the tube and flushes the cuttings from the bottom of the

previously drilled hole while the sampler is being lowered. When the sample tube reaches

the bottom of the hole, the cutter barrel moves downward relative to the tube. The

drilling fluid is then diverted into the annular space between the tube and the barrel,

under the rotating cutter barrel, and upward along the barrel. In soft materials the

compression in the soring above the sampling tube keeps the cutting edge of the tube

below the cutter barrel and the tube penetrates the sediment in a manner similar to

that for ordinary thin-walled sampling. In hard materials the spring compresses until

the cutting edge of the tube is above the bottom of the cutter barrel. Rotation of the

I
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barrel cuts an annular ring leaving a cylinder

of soil over which the tube can slide. Thus

the Pitcher sampler can adapt itself to the

consistency of the sediment, and it was found

to work very well in the materials encountered

in this investigation.

A total of twenty undisturbed samples,

ranging from medium sand to lean clay were

obtained. The sample tubes were 2.8 inches

in inside diameter and 2.8 feet long. Full

sample recovery was obtained in almost all

cases. All sample tubes were sealed imme-

diately after recovery, transported to the

Soil Mechanics and Bituminous Materials

Laboratory at the University of California,

Berkeley, and stored in a humid room.

C. CLASSIFICATION PROPERTIES OF AOUITARD

SEDKIENTS

\/ahe Open

Cutting 8it

a= ^

r

Thin - walled

Sampling '

(a)

1

-Cutter

Barrel

Fig. VI-2. Schematic diagram of

Pitcher sampler
(after Terzaghi and
Peck, 1967)

Figure VI-3 shows the variation of

in-situ water content, liquid limit, and

plastic limit with depth for the two major

fine-grained sediments encountered in obser-

vation hole 2. It may be seen that (1) there

is a rather wide variation in properties with

depth, (2) the in-situ moisture content is, in

general, substantially less than the liquid limit, which would be expected for samples

from large depth, and (3) the sediments tested were predominantly silts, silty clays and

clayey silts according to the Unified Soil Classification System.*

The data used in Figure VI-3 are listed in Table VI-1. Two to four values of

liquid limit are listed for a number of samples. These values represent liquid limit

test results obtained on different samples taken from the same sample tube and further

illustrate the range of variability, even over the relatively short vertical distances

contained within any one tube.

From Table VI-1 it may be noted that samples between depths of 200.7 and 219.0

ft are non-plastic. All core tube samples from the presumed aquitard underlying the

Engineering soil classifications are described in most soil mechanics texts; Lambe and
Whitman (1969) present the Unified System in some detail.
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in Oxnard aquitard materials
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Table VI-1. Atterberg limits, in-situ water content and
classification data,Oxnard observation hole 2

Depth, ft.



Oxnard aquifer have been examined. Figure VI-4 shows

the profile of sediments between 198.0 and 221 .h ft

depths. This figure shows that the profile is highly

stratified and further that most of the material is

sand. Those samples for which classification data

are shown in Figure VI-3 and Table VI-1 are biased

in favor of the most fine-grained materials encoun-

tered in the observation hole. Although the boring

log for the second observation hole suggested that

the aquitard separating the Oxnard and Mugu aquifers

begins at a depth of about 200 ft, the results shown

in Figure VI-4 suggest that the Oxnard may in fact

extend to a depth of almost 225 ft. Since no sam-

ples were taken from depths greater than 227.4 ft,

no definitive conclusions are possible relative to

either the thickness of the aquitard separating the

Oxnard and Mugu formations or its average properties.

In view of these findings, the need for

additional undisturbed sampling beneath the Oxnard

aquifer is evident if reasonable analyses of the

influences of sea water intrusion and pumping are

to be made.

The specific gravity of solids has been

determined for four samples, giving the values

listed in Table VI-1. With the exception of one

of the samples from the 226.7 to 227.4 ft depth

range, which contained a significant quantity of

organic matter, all samples had specific gravity

values of 2.68. This value of specific gravity

is consistent with the fact that most of the

aquitard sediments are composed predominantly

of quartz particles, with lesser amounts of clay

minerals and other non-clays. The specific

gravity of quartz particles is 2.67; whereas, the

clay minerals are generally heavier, with values

of the order of 2.70 to 2.75.

A plasticity chart has been prepared for

these materials and the results are shown in

Figure VI-5. With the exception of the material

198
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OXNARD AQUIFER
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206
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210-

-

UJ
UJ
ti. 212

I

X
I-
Q.
UJ 214Q
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I

L.

%

SILTY FINE SAND
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2:

I

\

(SAMPLE LOST DURING DRILLING)

isilt:

nN^nTT-WTDIUM SAND
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M DEPTH RANGE FOR UNEXAMINED SAMPLES

» SAMPLES FOR WHICH DATA ARE LISTED ir

TABLE VI-1 AND SHOWN IN FIG VI-3

Fig. VI-4. Detailed profile of

sediments between 198

and 225 ft depths -

observation hole 2
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Table VI-2. Grain size analysis of samples from
Oxnard observation hole 2

Unified Soil Classification and
Percent of Various Sizes
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Fig. VI-7. Partially dried material from depth

of 80.5 ft showing stratification

and emphasizes the great variability of characteristics within small vertical distances.

Grain size distribution values have been obtained for a number of samples of the

finer material using the hydrometer method of sedimentation analysis. Grain size distri-

bution curves are presented in Appendix C. The results are summarized in Table VI-2 in

the form of a listing of the percent (by weight) of clay, silt and sand sizes. Particles

coarser than 200 mesh sieve (74 microns) are considered sand, particles between 200 mesh

and 2 microns are silt, and clay size material is finer than 2 microns. Again it should

be pointed out that the data for 20A.0 to 224.5 ft depths are for samples representative

of the finest materials encountered. It is clear from the results in Table VI-2 that the

greatest proportion of particles are in the silt size range for almost all samples. These

values as well as the shapes of the grain size distribution curves (Appendix C) indicate

most samples to be quite uniform rather than well graded. The proportion of clay material

is, in nearly all cases, quite low.

These findings are consistent with the plasticity data and confirm that the aqui-

tard layers in the Oxnard area are composed predominantly of silty materials rather than

clays

.

A comparison of these results with those reported by Johnson et al . , [1968] for

sediments in the Los Banos-Kettleman City, Tulare-Wasco, and Santa Clara Valley areas

shows that the Oxnard sediments fall within the ranges of grain size distributions

exhibited by the sediments from the other areas. It appears, however, that the Oxnard

materials overall are somewhat coarser grained with lower clay contents than those from

the other areas.
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D. COMPOSITION OF AQUITARD SEDIMENTS

The binocular microscope. X-ray diffraction analysis, and several types of chemical

analysis were used to determine the composition of the aquitard sediments. The microscope

1 1 was used to study the non-clay fraction of samples taken from tubes corresponding to depths

of 73.1 ft, 96.5 ft, 219.0 ft and 221.8 ft. Study of silt and fine sand particles yielded

Information relative to particle size, particle shape, surface texture, and mineralogy.

1 . Mon-Clay Fraction

The non-clay fraction of the material in the confining bed overlying the Oxnard

ipaquifer (samples from 73.1 ft and 95.5 ft depth) is composed of medium to fine particles

and is uniform. Both bulky (predominantly quartz with some dark minerals) and platy

1 » particles were found. The platv particles were identified as mica. The bulky particles
I

varied from angular and rough textured to rounded with smooth surfaces.

The non-clay fraction (silt and fine sand) of samples taken from the aquitard

underlying the Oxnard aquifer was also composed mainly of quartz and mica particles.

Large variations in surface texture - from smooth to rough - was observed. A wider

range of particle sizes appears to exist in these samples than was found in the samples

taken above the Oxnard aquifer.

Small amounts of organic matter were found in all samples examined. The titration

method proposed by Rankin (1968) x^as used for quantitative estimation of the amount of

organic matter. In this method the organic matter is oxidized using potassium dichromate

and sulfuric acid. After additional of phosphoric acid and barium diphenylamine sulfonate

1 (indicator solution, the amount of potassium dichromate consumed in reaction with the
I

I [organic matter can be determined by titration with ferrous sulfate. A separate set of

samples was also examined which had been pre-treated with sodium hypochlorite (NaOCl) and

hydrogen peroxide (H.0-) for the purpose of breaking down organic tissues prior to the

titration test. The results of the organic matter determinations are given in Table VI-3.

I

These results show that while organic matter is present in all samples, the amounts

'are very small, in all cases less than 1%. It may be noted also in Table VI-3 that in all

cases the pretreated samples gave slightly greater values of organic matter than the un-

treated soils. This probably reflects the greater ease with which broken down tissue can

be oxidized by the dichromate solution. The presence of these small amounts of organic

;matter are not likely to be of great importance in influencing the behavior of these soils .

*,Subsequent to these tests some samples have been found which contain larger amounts of

organic material, some of which is in nearly undecomposed form.
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Table VI-3. Organic matter content of

Oxnard aquitard materials

Sample Depth
ft.
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Table VI-4. Mineralogy of the clay-size fraction
from Oxnard aquitard samples



Table VI-5. Cation exchange capacity values
for Oxnard aquitard samples

Sample Depth
ft.



Table VI-6. Pore fluid salt content for
Oxnard aqultard materials

Sample Depth
ft.
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Table VI-7. Permeability of undisturbed samples
of aquitard sediments
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Fig. VI-10. Permeability for low

and high plasticity
materials

.

Fig. VI-11. Permeability and
size fraction
profiles

.

for different samples, however. The fact that the horizontal permeability exceeds the

vertical permeability is usually a consequence of stratification of the sediments. It

may be influenced to some extent also by preferred orientation of clay particles.

Because the Oxnard sediments are in some respects similar to those studied by

Johnson et al. , there is every reason to believe that they will also exhibit anisotropic

permeability characteristics.

Figure VI-10 was prepared in an attempt to determine if any sort of relationship

existed between permeability and water content. In this figure, the solid points refer

to clayey silts of low plasticity; whereas, the open points represent clayey silts of

high plasticity. No relationship appears to exist on this basis.

In Figure VI-11, the variations of permeability, sand content, silt content, and

clay content with depth are shown. From the shapes of these relationships there appears

to be some correlation between the relative amounts of the different size fractions and

Dermeability for the material overlying the Oxnard aquifer. A decrease in permeability

with increase in clay and silt content and decrease sand content is evident. Such a

relationship is not evident in the material underlying the Oxnard aquifer.
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Since permeability of a fine-grained soil is a complex function of many factors; '.

e.g. particle size, particle shape, size distribution, particle arrangement, and physico-

chemical influences on the finer particles, the lack of any simple correlation between

permeability and only one or two variables as in Figures VI-10 and VI-11 is not surprising.

Johnson et al. , [1968] made a large number of permeability determinations on sam- ,

Dies of deep sediments from three subsidence areas of California. Samples from core holes

in the Los Banos-Kettleman City area had coefficients of vertical permeability ranging from;

0.00007 to 370 gpd per sq. ft. Most samples had permeabilities in the range of 0.001 to

0.0. gpd per sq. ft. Samples from the Santa Clara Valley showed permeabilities in the range

of 0.0001 to 0.03 gpd per sq. ft, with most values in the range of 0.0001 to 0.01 gpd per

sq. ft. While these ranges may seem very large, it should be pointed out that Johnson et

al. , studied both coarse- and fine-grained samples. In the present study samples only of

the fine-grained sediments were taken. The permeabilities of these materials. Table VI-7

,

compare favorably with those for the finer-grained samples tested by Johnson et al.

F. COMPRESSIBILITY CHARACTERISTICS OF AQUITARD SEDIMENTS

The compression characteristics of samples of undisturbed material from the

aquitards above and below the Oxnard aquifer have been determined using standard con-

solidation testing procedures [Lambe, 1951]. The results of these tests are shown in

Figure VI-12 for samples taken above the Oxnard aquifer and Figure VI-13 for samples

from below 200 ft depth in the form of void ratio versus log effective vertical pressure.

The laboratory consolidation characteristics have been determined for seven samples from

the aquitard layer overlying the Oxnard formation; and five tests have been made on the

material presumed to separate the Oxnard and Mugu aquifers. It is this latter material

vjhich is of the greater interest in this project, but unfortunately, most of the sediment

from the zone samples is nearly cohesionless , as indicated earlier, so that preparation

of satisfactory samples for consolidation testing was not possible in many cases.

The maximum preconsolidation pressure acting on these samples was determined using

the procedure suggested by Casagrande [1936]. These values are compared with the existing

effective overburden pressure in Figure VI-14. This pressure was estimated by assuming a

submerged unit weight of sediment equal to 60 lb per cu ft. This is consistent with an

average in-situ water content of 27.5% over the entire profile. Although the data are

somewhat limited, the comparison on Figure VI-14 indicates that these sediments are over-

consolidated; i.e., the present overburden pressure is less than the greatest stress to

which the soil has been consolidated in its history.

No definite relationship is defined by the maximum past pressure values shown in

the upper part of Figure VI-14, although a trend is indicated by the dashed curve. If

in fact this curve is representative of the past pressure variation with depth, it would
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Fig. VI-12. Compressibility characteristics of aquitard
sediments overlying Oxnard aquifer

indicate that at some time in its history this layer had been partially consolidated under

a pressure considerably greater than the present overburden effective stress. This con-

solidation would have involved drainage both upwards and down into the Oxnard aquifer;

i.e., the shape of the dashed curve suggests drainage at both aquitard boundaries. A

considerable number of additional consolidation tests will have to be run before the past

pressure relationship can be defined with more certainty.
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Fig. VI-14. Comparison between present effective overburden
and maximum preconsolidation pressures

The compression index values (change in void ratio per 10 fold change in consol-

idation stress) are in the range of 0.2 to 0.6. This represents a moderate compressibility

and is typical of values for silty materials.

Data of the type shown in Figures VI-12 and VI-13 are reproduced in a later section

of this report for use in comparing the compression characteristics of the existing sed-

iments from the same depth ranges which have been leached with sodium chloride solutions.

Such comparisons allw^/ the estimation of surface settlements which might develop as a

result of changes in pore water pressures, cation type, and electrolyte concentrations

in the Oxnard and Mugu aquifers. The results of consolidation tests on unleached (as

received) samples are summarized in Table Vl-8. Values of the coefficient of consolida-

tion are listed in Table VI-8 as well. The physical significance of this parameter is

given in the next section.
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Table VI-8. Consolidation characteristics of aquitard sediments

(All samples from observation hole 2)

Depth
ft.
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actual time required for the sample to reach a degree of primary consolidation of 50

percent (11.2 minutes for the case shown in Figure VI-15), the coefficient of con-

solidation, c , is given by

0.197 H

^50

where T^. is a dimensionless time factor given by the theory and H is half the sample

thickness for a sample drained at both top and bottom.

The coefficient of consolidation is related to other sample properties by

k(l+e)
c =
V ay

v w

where k is the coefficient of hydraulic permeability, e is the void ratio, y is the unit
w

weight of water, and a is the coefficient of compressibility. The value of a is given

bv the slope, -Ae/Ap, of a plot of void ratio versus pressure at the average pressure

corresoondine to the pressure increment used. Since c , e, y . and a are all known from
' - V W V

the test results, the hydraulic permeability can be computed using the above equations.

This has been done for three of the consolidation test results obtained in this

investigation for which direct permeability measurements were made and the soil type

permitted calculation of the coefficient of consolidation. Figures VI-16, VI-17 and
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VI-20 show the variation of void ratio, coefficient of consolidation, measured permeability,

and computed permeability with consolidation pressure for two samples from above the Oxnard

aquifer and one sample from beneath the Oxnard aquifer. It may be seen from these figures

that the agreement between the measured and computed values of permeability is not good.

The computed values vary with consolidation pressure in a manner quite similar to the

variation of coefficient of consolidation with pressure.

On the other hand, the actual permeability varies with pressure in the same general

way as does the void ratio, which is a more reasonable relationship. Figures VI-18 and

^'1-19 show the variation of void ratio and measured permeability with consolidation

pressure for two additional samples from depths greater than 200 feet.

It may be concluded from these comparisons that for these sediments it would be

unwise to use values of permeability that have been computed from consolidation test

results. Any estimates of flow quantities obtained using these values would be too low,

and any estimates of the change in permeability due to consolidation would be considerably

in error.

H. PROPERTY CHANGES ACCOMPANYING REPLACEMENT OF PORE WATER WITH SALT SOLUTIONS

The final phase of the laboratory investigation was a study to establish the sus-

centibility of the aquitard properties to change as a result of salt water replacement of

the pore fluid and to establish the significance of hydraulic and salt flows through these

materials under the action of hydraulic gradients. Of particular interest was the effect

of salt water replacement on the compression and permeability characteristics of the

aquitard sediments.

Consolidation and direct permeability measurements were performed in the closed

ring consolidometer shown in Figure VI-21. The closed ring consolidometer permitted

direct permeability tests to be run at any stage of the consolidation test. The fluid

chamber above the sample permitted the juxtaposition of solutions of any desired salt

concentration against the top of the sample. The ports at the top and bottom of the

sample allowed solutions to flow through the sample when a hydraulic gradient was induced

across the sample. With proper adjustment of the applied load and back pressure in the

pore water, hydraulic gradients could be induced while maintaining the soil structure at

any desired average effective pressure level. As in the previous tests, permeability

measurements were made at the equilibrium void ratios corresponding to the standard

effective pressure increments and at the equilibrium void ratio corresponding to the

oresent effective overburden pressure. At the in-situ effective overburden pressure,

I
permeability measurements were made both before and after leaching with the salt solution.

The control board used for flow measurements is described by Mitchell and Younger [1966].

Back pressure was maintained in the water throughout the tests in order to more closely
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Fig. VI-21. Closed ring consolidometer

approximate field conditions and to insure saturation of the sample.

In oermeability measurements flow was from the bottom of the sample to the top.

The gradient was induced by reducing the back pressure in the water at the top of the

sample. Pressure differences used resulted in hydraulic gradients of from 8 to 118. The

calculated value of permeability in centimeters per second was taken as the average of

several runs at different hydraulic gradients within the range given above. The upper J

limit of hydraulic gradient for a given effective consolidation pressure was that corres-

ponding to a pressure difference of five percent of the effective consolidation pressure.

After the sample had been consolidated under the standard sequence of pressures to

the computed effective overburden pressure, they were leached with 0.6N sodium chloride

solution. Prior to this, the water in the chamber above the sample was distilled. After

all primary consolidation had occurred and the final dial reading noted, the salt solution

was introduced into the chamber at the top of the sample. The solution was made to flow

through the sample from top to bottom under a hydraulic gradient induced by increasing the

fluid back pressure in the chamber above the sample. Hydraulic gradients from 8 to 16
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were used. Flow through the samples was maintained for up to two weeks.

The samples were considered leached when the solution flowing out of the sample

had a salt concentration of that flowing in, e.g. 0.6N, as determined by electrical con-

ductivity measurements on the effluent. After a sample was leached and the change in

void ratio at constant effective pressure noted, a direct permeability test was run as

described above. Because of limitations inherent in the flow measurement apparatus, the

solution used for permeability measurements was distilled water, both before and after

leaching. Finally, the consolidation-permeability measurement sequence was resumed using

standard consolidation test effective pressure increments.

The results of the consolidation permeability tests on leached samples are shown

in Figures VI-22 through VI-25. Also plotted on these figures are the results of

consolidation-permeability tests on unleached samples from adjacent depths.

If the data shown on the figures can be considered to reflect only the effects of

leaching on the aquitard material, the following conclusions may be drawn:

(1) Substitution of salt solutions of the same concentration as sea water for

distilled water in the pores of the samples tested resulted in a small decrease

in void ratio at constant effective pressure. It should be noted that at the

start of leaching distilled water had largely replaced the natural pore fluid

as a result of previous direct permeability measurements at lower values of

effective pressure.

(2) Replacement of the water in the pores by salt solution resulted in a decrease

in the coefficient of permeability. In the absence of physico-chemical factors,

that is, if the effect of changes in cation type and concentration in the pore

water are not considered, then this result could be attributed to the decrease

in void ratio.

(3) For at least two and possibly three of the four samples (samples from depths

80.2, 226.4, and 103.4 ft) replacement of distilled water in the pores by

salt water resulted in an apparent reduction in permeability at effective

pressures greater than the effective overburden pressure. This conclusion

is tentative and is based on a comparison of the slopes of the permeability-

effective pressure curves for the leached samples with those of the unleached

samples from approximately the same depths. This conclusion is thus qualified

by the previously emphasized observed variation in properties of the soils

within small depth intervals. Furthermore, the leached sample from depth

97.5 showed the opposite effect when compared to the unleached sample from

depth 98.0 ft.

(4) Replacement of distilled water in the pores by a 0.6N sodium chloride solution

did not significantly change the compressibility characteristics of the samples

as defined for instance by the compression index, i.e. the slope of the virgin

consolidation curve. Again this conclusion is qualified by the observed
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variability of the aquitard sediments. Furthermore, because permeability

measurements were made with distilled water, the pore fluid largely reverted

to distilled water once permeability measurements were initiated after

leaching. Thus the test results may reflect the effects of exchanging

monovalent sodium ions for the divalent calcium and magnesium ions naturally

absorbed on the clay rather than an increased electrolyte concentration in

the pore fluid.

(5) For the sample from the depth range 78.8 to 81.6 (Figure VI-22) , replacement

of the distilled water in the pores with a salt solution resulted in an in-

crease in the liquid limit from 63 to 85 percent. The possibility that this

represents an apparent increase due to the variability of the sediments is

remote since the natural liquid limit of the samples tested in no case

exceeded 79 percent. For the depth range 78.4 to 81.5 natural liquid limits

did not exceed 69 percent.

The increase in liquid limit was perhaps due to the substitution of sodium ions fo

the naturally absorbed calcium and magnesium cations. Mesri [1969] and Salas and Serratos

[1953] report that for all pore fluid electrolyte concentrations, sodium monmorillonite ha

considerably higher liquid limits than calcium montmorillonite . In view of the fact that

the liquid limit determination was made after several direct permeability measurements wer

made, the possibility that the increase in liquid limit was also partly a result of a de-

crease in electrolyte concentration cannot be discounted. Mesri, however, found that an

electrolyte concentration decrease from IN to O.OOIN with calcium as the cation caused

the liquid limit to increase from 201 to 207 percent. The same pure montmorillonite with

sodium as the absorbed cation had a liquid limit of llAO.

The difficulty in fitting the results of the consolidation-permeability tests on

leached samples into a consistant pattern is primarily due to the variability of the

samples within narrow depth ranges. Clay content and cation exchange capacity vary over

wide limits. The presence of organic material in all the samples may contribute to non-

clay plasticity. The net result is that changes in properties attributed to leaching may

in fact be due to the natural variability of the soils or the test method used.

In any case, the observed changes were small and are most probably due to the

exchange of sodium ions for calcium and magnesium ions as the absorbed cation on the fine

grained fraction of the sediments. The changes in void ratio for the four samples tested

are summarized in Figure VI-26. Also given in the figure is an extremely approximate

calculation of the settlements which could occur as a result of complete replacement of

the natural pore fluid with a salt solution of the concentration of sea water. A reliable

estimation of the settlements which may occur requires the testing of many more samples to

adequately represent the compressible layers in the aquitards, as well as improvements in

test methods and equipment. While the calculation is presented to serve as an example
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only, it is significant in that it indicates that for aquitards with montmorilloni te

clay contents higher than the rather low values for the Oxnard area aquitards, settle-

ments due to sodium chloride solution replacement of natural pore fluids containing

divalent cations in low concentration might be noticeable.

I . SUMMARY

The purpose of this chapter has been to present the results of laboratory studies

of the fine-grained aquitard sediments that overlie the Oxnard aquifer and the sediments

which separate this aquifer from the underlying Mugu aquifer. Data are presented on the

classification, composition, consolidation and permeability of the sediments as well as

on the effects of the replacement of the natural pore fluid with salt water.

The sediments throughout these aquitard layers are predominantly made up of silt-

size particles, which are mainly composed of quartz and mica or mica-like materials. The

clay content is generally low, amounting to 20 percent or less by weight of the whole

material in most cases. Montmorillonite is the dominant clay mineral in the clay fraction,

with lesser amounts of a kaolin mineral, quartz, and a hydrous mica or illite. The cation

exchange capacity of these soils is high relative to the amount of clay mineral present,

amounting to 20 to 45 milliequivalents per hundred grams of dry soil. The silt fraction

was found to possess a cation exchange capacity of more than 20 milliequivalents per

hundred grams.

The present pore fluid salinity is relatively low, amounting to 1300 to 1900 ppm.
^

Magnesium and calcium are the dominant cations in solution. fl

Although the material properties vary erratically with depth, almost all samples

can be classified as silts of low or high plasticity, with the exception of materials

between 200 and 224 ft depth, which are mainly sands. In general the in-situ water con-

tent is significantly lower than the liquid limit. The materials are moderately compress-

ible, with compression index values ranging from 0.2 to 0.6.

The hydraulic permeability varies erratically with depth over the range from about-5-7 2
10 to less than 10 cm/sec (0.1 to less than 0.001 gpd/ft ). This variation of perm-

eability cannot be simply accounted for in terms of any single factor. The variation of

permeability with consolidation pressure and void ratio has been established from consol-

idation tests and direct measurement. Since permeability values computed from consolidatioi

test results do not agree well with directly measured values, only values established by

direct measurement should be used for estimating ground water flows.

Data from consolidation and permeability tests on samples leached with 0.6N sodium

chloride solutions have been compared to tests on unleached samples from the same depth

ranges. Substitution of the salt solution for the natural pore fluid in the pores of the

sediments resulted in a small decrease in void ratio at constant effective consolidation
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pressure. The effect of leaching on the permeability of the sediments was inconclusive

due to the variability of the aquitard soils. Leaching with salt solutions did not

significantly change the observable compressibility characteristics of the samples tested.

This conclusion is also qualified by the variability of the samples. The changes that

were observed are attributed to substitution of sodium ions for calcium and magnesium

ions as the absorbed cation during leaching.

The properties of the aquitard separating the Oxnard and Mugu aquifers have not

been well defined by this study. The samples recovered from a zone thought to be re-

presentative of this aquitard were in fact predominantly sand. Samples were not taken

from depths greater than 227.4 ft; thus, the total thickness of any clay-like materials

that may exist remains unknown.

Additional sampling and testing are required to properly define the properties

of the aquitard separating the Oxnard and Mugu aquifers as well as to completely identify

the parameters which control the response of aquitard materials to the intrusion of salt

water.
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CHAPTER VII. THEORETICAL ANALYSIS OF CHEMICO-OSMOTIC

DIFFUSION AT OXNARD SITE

J. A. Greenberg and J. K. Mitchell

A. INTRODUCTION

Up to this point, the emphasis has been on the movement of fluids in the multiple-

aquifer system of the Oxnard coastal basin solely by virtue of hydraulic gradients. The

presence of sea water in the Oxnard aquifer, however, while fresh water is still present

in other layers of the system, raises the question as to the importance of the chemical

gradients. The work of Olsen [1969, 1970] shows that there may be a coupling across

aquitard layers between solute (or salt) concentration gradient and ground water flow,

and another between pore pressure gradient and solute flow; both of which can sometimes

be fairly significant in the diffusion of ground water and dissolved solutes. In partic-

ular there is a possibility that these coupling effects could lead to unexpected intrusion

into the Mugu aquifer because of salt flow across the aquitard that separates this aquifer

from the overlying Oxnard.

The coupling between solute concentration gradient and ground water flow, i.e.

the mechanism by which a salt concentration gradient causes ground water flow and a

hydraulic gradient causes a salt flow, is referred to as chemico-osmotic coupling. In

addition, Olsen' s work suggests that a solute concentration increase in a solution in

contact with a soil layer could cause the soil layer to consolidate chemico osmotically.

Hence there is the possibility that the aquitards in contact with the Oxnard aquifer

could consolidate, and cause ground subsidence.

A study was undertaken to (1) develop general solutions for coupled hydraulic and

solute flows in fine-grained sediments and (2) to determine if chemico-osmotic effects

are of significance at the Oxnard site. The results of this study are summarized here,

and presented in more detail in Appendix D.

B. OSMOSIS

Osmosis, which is one manifestation of chemico-osmotic coupling, has been studied

Note that the terms soil and sediment are taken as synonymous in Appendix D.
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since the middle of the 18th Century. The body of literature which has grown around

this phenomenon is vast, and contains much information which aids in our understanding

of chemico-osmotic coupling in fine-grained sediments. This literature was therefore

searched, and we present here a short summary of our findings.

The basis of osmosis and chemico-osmotic coupling is that some membranes have

the ability to retard or prevent the flow of solute (i.e., the salt), but not the flow

of solvent (i.e., the water) in a solution. A membrane which has this ability is called

semi-permeable with respect to the solution. If the membrane completely prevents all

flows of solute, it is referred to as a non-leaky, semi-permeable membrane. If the

membrane partially prevents flow of the solute, it is referred to as a leaky semi-

permeable membrane. If the membrane is so leaky as to not retard or inhibit flow of

the solute in any way, it is not semi-permeable.

Examination of the primary mechanisms of semi-permeability, and the chemico-

osmotic properties of sediments leads to the conclusion that certain sediments may

behave as semi-permeable membranes. In particular the fine-grained sediments above and

below the Oxnard aquifer contain clay layers which are probably leaky, semi-permeable

membranes with respect to sea water.

C. THEORY OF CHEMICO-OSMOTIC DIFFUSION

A theoretical framework was developed to provide a comprehensive means for

quantitatively analyzing chemico-osmotic diffusion problems; including the situation

at Oxnard. The theory was developed in three stages: Firstly, equations were derived

which describe the simultaneous flow of solute and solutions in a sediment. These

equations are referred to as the flow equations. Secondly, the equations of continuity

were derived for solute and solution. Finally, the flow equations and continuity equa-

tions were combined to yield two diffusion equations; one describing the diffusion of

solute and the other describing the diffusion of solution in a sediment solution system

subject to both hydrostatic pressure and solute concentration gradients (for the details

of these developments see Chapter II of Appendix D.)

1 . Assumptions

The mathematical model considered was an open system consisting of a solute and

solution in the pores of a porous compressible sediment in which we assume:

(1) Isotropy and homogeneity

(2) Isothermal conditions

(3) No electrical or electro-magnetic gradients

(4) No ion-exchange during diffusion
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(5) The solute acts as a single species; i.e. it does not dissociate so that

different species act independently.

(6) The solution is dilute enough for "ideal solution" relationships to be valid

assumptions, and for the volume flow rate of solution to be essentially equal

to the volume flow rate of solvent.

(7) Saturated sediment.

(8) The postulates of irreversible thermodynamics are applicable to the process.

For experimental substantiation of this assumption, see the work of Abd-El-

Aziz and Taylor [1964] and Olsen [1969, 1970].

2. Development of the Flow Equations

From the first postulate of irreversible thermodynamics it can be shown that the

irreversible diffusional flow of solute and solution in the pores of a sediment will

generate entropy $ per unit volume which is given by

— — RT
$ = J V grad (-U) + Jj -^ grad (-c^) (VII-1)

s

where $ = dissipation function

J = vector rate of flow of solution

J, = vector rate of flow of solute relative to the vector rate of flow of solution
d

V = volume of solution per mole of solution

U = hydrostatic excess pressure

R = gas constant

T = absolute temperature

c = number of moles of solute per unit volume of solution
s

Flow equations can be derived from equation VII-1 by using the second postulate

of irreversible thermodynamics.

These equations are

_ RT
J = L„ V^ grad (-U) + L^ „ — grad (-c ) (VlI-2)
LJ-XIj xzc s

s

— RT

^d = Si \ g"'^ ^-"^ ^ ^2 - g"'' ^-%^
s

The third postulate of irreversible thermodynamics establishes the reciprocal

relationship

L = L (VII-4)
^21 ^12

The L-coeff icients are phenomenological coefficients which depend on the particular

sediment solution system being considered.
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In practice it is convenient to use the vector flow rate of solute relative to

the fixed sediment, J defined as
s

s d c L
(VII-5)

3. Development of the Continuity Equations

Application of the law of conservation of mass to the solution in the pores of

the sediment yields the continuity equation for solution

3y,

V J.
'L 3t

Application of the same principle to solute gives

9v

V J
3t

where Y = number of moles of solution per unit volume of soil

Y = number of moles of solute per unit volume of soil
s

4. Diffusion Equations

(VII-6)

(VII-7)

The diffusion equations are generated by combining flow equations VII-2 and VlI-3

with continuity equations VII-6 and VII-7 yielding

^^T - RT
9^ = V . {L^^ V^ grad (-U) + L^^ " ^'^^ ^-%^^ (VII-8)

^^s - ''s RT ^12^^

^ s L
(VII-9)

Equations VII-8 and VII-9 provide a completely general description of the coupled

hydraulic-chemical flow process. They are not, however, in a form that is suitable for

direct application to real problems. Thus, it was necessary to adapt the equations as

follows. The L-coef f icients are related to soil and solution properties according to

K'

'11 w 2
V, YL w

^22 RT
°

(VII-10)

12 RT V he 21 V, Y he
L w
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where y = specific weight of water
w

D = diffusion constant of solute

k, and k ,
= chemico-osmotic coupling coefficients

he ch

X = c /c is the maximum value of c expected during the process
s sm s b f

K' = hydraulic permeability of the sediment

Details of the derivation of equations VII-10 are given in Chapter II-C, Appendix D.

It was assumed that change in void ratio and pore pressure within the aquitard

are related by

Ae = a AU (VII-11)
V

where AU = change in pore pressure

Ae = corresponding change in void ratio

a = coefficient of compressibility of the sediment

Finally it was assumed that the total volume of the aquitard, the molar density of the

pure water, and the diffusion coefficient for salt are constants during the chemico-

osmotic diffusion process (details are given in Chapter II-C of Appendix D)

.

With these assumptions and equations VII-10 and VII-11, the one dimensional forms

of the diffusion equations VII-8 and VII-9 become

2 d^c
3U 3 U

,
1 + e s ,.,^-. ^„.

-5— = c —T + k, TT (VII-12)
dt V ^ 2 a Tic ^ 2

dy V dy

and

2

s 1 + e ,, 3 I 3U
I , /T , \ T^i s 3U /•titt 1 1S

e vz— = —r:— K , 1^ U v~ + (1 + e) D —

^

a c ^— (VII-13)
3t Y ch 3y I 3y I „ 2 v s 3t

where K^=k^+c K'
ch ch sm

D' = D + c k,
s he

Comparison of theoretical predictions for pore pressure and salt concentration vs. time

from equations VII-12 and VII-13 with existing data provided satisfactory agreement and

confidence that the theory is consistent with physical reality.

D. ANALYSIS OF THE OXMARD SITE

As mentioned above, sea water has invaded the Oxnard aquifer for several miles

inland. The aquitard between the Oxnard and the next lowest aquifer, the Mugu aquifer,

can be thought of as a layer of fine-grained sediment having fresh water as pore water,

and in contact with an aquifer (the Oxnard) in which the originally fresh pore water has
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been replaced by sea water. This replacement of fresh water by sea water is equivalent

to a solute (predominately NaCl) concentration increase at the upper boundary of the

aquitard. Since the clay members of the aquitard are leaky and semi-permeable with

respect to sea water, increasing the NaCl concentration at the upper boundary could

have two possible consequences.

(1) It could induce an osmotic pressure drop at the boundary which would suck

pore fluid out of the aquitard, and hence induce chemico-osmotic consolida-

tion which would manifest itself as surface subsidence.

(2) The increase of NaCl concentration in the Oxnard aquifer imposes a NaCl

concentration drop across the aquitard which tends to drive NaCl down into,

and through the aquitard by diffusion. Consequently the aquitard and the

Mugu aquifer would tend to become contaminated by NaCl.

The theory described above was used to analyze the one dimensional chemico-osmotic

diffusion of NaCl solutions across the aquitard separating the invaded Oxnard which was

assumed to contain a salt concentration of 0.6 normal (~36,000 ppm) , from the fresh waters

of the Mugu. Since the laboratory investigation of the pore fluids in the aquitard ma-

terials revealed salt concentrations of 1340 to 1920 ppm (see Chapter IV-D), it was assumed

that initially all of the fluids in the aquitard had uniform salt concentrations of 0.03

normal (~1,800 ppm). For the first analyses the aquitard was assumed to be 30 feet thick,

and later smaller thicknesses were also examined.

To demonstrate the effects of chemico-osmotic diffusion, the aquitard material

was assumed to have sufficient clay so that the basic constants would be as follows:
-7 -3 2

hydraulic permeability, K'= 10 cm/sec (2.2 x 10 gpd/ft ); coefficient of compress-
-2 2 -3 2

ibility, a = 3.5 x 10 cm /kg; coefficient of consolidation, c = 10 cm /sec, coupling
^

-7 2 ^-5 2
coefficient, k, = 2 x 10 cm /sec, and diffusion constant, D = 10 cm /sec. Reference

he

to Tables VI-7 and VI-8 will show that the above values for a , c , and K' are typical for
_ V V

the clay samples tested in the laboratory. However, 10 cm/sec is roughly ten times

smaller than the permeability found during the pumping tests (see Table V-6) due to the

greater proportion of silt and sand layers within the aquitard in the field. The results

presented below must therefore be viewed in terms of what the situation would be if 30

feet of this type of clay material were separating the Oxnard and Mugu aquifers.

Two cases were considered. The first was that of no pumping from either aquifer

so that initially no hydraulic gradient exists. The second case was that of pumping

fresh water from the Mugu only, and two different values of drawdown, 10 and 30 feet,

were examined.

The analyses were made using finite difference forms of equations VII-12 and VII-13.

The various chemico-osmotic parameters cited above were deduced from a comparison of lab-

oratory measured properties of the aquitard materials with sediments that Olsen [1969,

1970] had previously investigated. The results of the analyses are presented in more
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detail in Chapter VI of Appendix D. Here, we shall confine our attention to the most

pertinent results of the analyses.

Figure VII-1 presents a curve of average chemico-osmotically induced pore

pressure drop (expressed as a percentage of the maximum chemico-osmotically induced

pore pressure drop) versus time. Because of equation VII-11 above, Figure VII-1 can

be thought of as a curve of chemico-osmotically induced consolidation (or reduction in

void ratio) versus time. From Figure VII-1 we observe that the chemico-osmotic consol-

idation increases for about 25 years. At this point the amount of chemico-osmotic

consolidation is .001 ft (see Section VI-C, Appendix D) which is negligibly small.

After 25 years the chemico-osmotic consolidation ceases, and the aquitard rebounds as

the chemico-osmotic pore pressure drop decreases to zero. However the aquitard does not

rebound to its original thickness. Figure VI-13 in Chapter VI of this report shows that

the aquitard is more compressible during consolidation than rebound. Consequently the

aquitard v/ill only recover a fraction of the consolidation. The size of this fraction

depends on the ratio of expansibility to compressibility.

The explanation for this initial chemico-osmotic consolidation followed by re-

bound is that initially the high NaCl concentration in the Oxnard aquifer causes water

to be sucked out of the aquitard by chemico-osmosis. This causes chemico-osmotic con-

solidation for about 25 years. After 25 years, diffusion of NaCl into the aquitard

becomes appreciable. The result is a chemico-osmotic suction of sea water back into the

aquitard which causes the consolidation to cease and the rebound to begin. This is

discussed in more detail in Chapter III-C of Appendix D.

Figure VII-2 shows the amount of consolidation that can occur if, in addition to

the chemico-osmotic effects, there is a drawdown of 10 and 30 feet in the hydraulic head

of the Mugu aquifer. In both cases, we see that it takes about 25 years for the consol-

idation to be completed, and the amount varies linearly with the amount of pumping. A

final consolidation of 0.1 ft is induced by a drawdown of 10 ft, and 0.3 ft by a drawdown

of 30 ft. Both of these consolidations are considerably larger than the chemico-osmotic

consolidation (0.001 ft) discussed above, implying that chemico-osmotic coupling does not

induce consolidation of any consequence. Both types of consolidation take essentially

the same length of time to reach the steady state because in each case, the rate is

controlled mainly by the hydraulic permeability.

Figure VII-3 depicts curves of the inflows with time of NaCl into (or rate of

degradation of) the aquitard expressed as a percentage of the amount of inflow of NaCl

into the aquitard in the equilibrium steady state when there is no drawdown in the Mugu

aquifer. Note that initially the percentage of NaCl inflow is about 17%, not 0%. This

is because there is an initial NaCl concentration of 0.03 normal in the aquitard. In

addition to this there is an inaccuracy inherent in the finite difference approximation

method which causes initial values of NaCl inflow to be overestimated. Note also that
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the non-steady state lasts for several thousands of years before a final steady state

movement of NaCl is established.

A comparison of curve I for no drawdown in the Mugu with curves II and III for

drawdowns of 10 and 30 feet, respectively, shows how the rate of NaCl inflow into the

aquitard is greatly increased as a result of pumping. The explanation is that pumping

from the Mugu causes a downward flow of sea water into and through the aquitard thus

producing a more rapid as well as higher level of degradation.

As the NaCl moves through the aquitard, it eventually will reach the fresh water

in the Mugu, and the time for this to occur is shown in Figure VII-4. Here one sees that

the effect of drawdown in the Mugu causes a disproportionate increase in inflow as pumping

increases. Table VII-1 summarizes results from Figures VII-3 and VII-4. It is apparent

from these results that an aquitard that is 30 feet in thickness and has the properties

assumed above acts as an effective barrier to NaCl movement from the Oxnard into the

Mugu for long periods of time.

Table VlI-1. Effect of drawdown in Mugu aquifer on rate
of NaCl movement through 30 feet of aquitard
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Table VII-2. Effect of aquitard thickness on rate
of NaCl movement into Mugu
(Hydraulic gradient = 1/3 ft/ft)



Table VII-3. Time for degradation of Mugu
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CHAPTER VIII. DISCUSSION OF RESULTS

P. A. Witherspoon and J. K. Mitchell

A. OXNARD LEAKY AQUIFER SYSTEM

The results of the field pumping tests have definitely proven that the Oxnard

aquifer and its associated confining beds constitute a leaky aquifer system. This is

easily seen on Figure V-6 from the manner in which the drawdown data deviate from the

Thels curve after about one day.

The question can therefore be asked whether conventional methods of analyzing

leaky aquifers could be used at Oxnard. If the pumping test had been run for only one

day, the effects of leakage would probably have been overlooked because they do not

become pronounced until after two days of pumping. However, assuming a sufficient

period of pumping, the data plotted on Figure V-6 could have been compared to the r/B

solution (see Chapter IV-C) , and one would obtain a value of r/B = 0.5. This is reason-

ably close to the value that can be calculated for the observation well of Figure V-6.

The radial distance for this well is 502 ft, and using the results given in Chapter V,

one can compute that r/B = 0.2.

Once an answer has been obtained using the conventional r/B method of analysis,

the difficult question arises as to which aquitard is leaking. The field results using

piezometers placed above and below the Oxnard clearly indicate that both aquitards are

leaking. The results of our analysis using the ratio method reveal that the permeability

of the underlying aquitard is about twice that of the overlying bed. It is impossible to

extract this kind of information from the r/B method of analysis. Thus, it would be clear

from the results that a leaky aquifer exists, but a more precise determination would not

be possible. The ratio method, on the other hand, gives quantitative answers to this

problem without ambiguity.

B. SEA WATER INTRUSION IN COASTAL BASINS

Having obtained values for the hydraulic properties of sediments in the Oxnard

Basin, what are the implications with regard to the widespread problem of sea water

intrusion? If the various coastal basins contain aquitards with permeabilities approaching

those found at Oxnard, the problems of intrusion may be more complicated than originally
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believed. The general concept that the path of intrusion is essentially horizontal

through the aquifer being pumped needs to be broadened to take into account the effects

of vertical water movement.

To consider this problem, let us examine a generalized cross-section of a coastal

basin as shown in Figure VIII-I. Originally this basin contained three fresh water

aquifers that are separated from each other and from the ocean by aquitards. With

reference to the Oxnard area: Aquifer A represents the semiperched zone; Aquifer B, the

Oxnard aquifer; and Aquifer C, the Mugu aquifer.

We shall assume that as a result of overpumpage, sea water has intruded Aquifer

B at point 1 (Figure VIII-1) and moved well inland. If Aquifer C is to be used for with-

drawal purposes because water in the overlying Aquifer B is no longer potable, the question

can be raised as to the magnitude of intrusion that can occur by vertical migration through

the aquitard at point 2. Suppose that Aquifer C has been pumped sufficiently to develop

a steady state vertical gradient of 1 ft/ft across the aquitard, whose permeability is

the same as that found at Oxnard (i.e. 0.02 gpd/ft or 10 cm/sec). Using the simple

formula, Q = K i A, one can quickly calculate that the vertical migration across a square

mile of aquitard under these conditions would amount to 560,000 gpd.

The problems that could develop from such intrusion would depend on the extent of

water withdrawal from Aquifer C beneath this same square mile. If the average pumping

rate is only 1,000 gpm, a vertical intrusion of 560,000 gpd represents 39 percent of the

pumpage and might be a serious source of degradation. On the other hand, if the area

can sustain yields of 10,000 gpm, the same intrusion represents only four percent of

pumpage and might be tolerated. If the vertical gradient is less than 1 ft/ft, the rate

of migration would be proportionately decreased. Nevertheless, the important fact remains

that once sea water has intruded Aquifer B, the possibility of vertical migration through

an adjacent aquitard cannot be disregarded.

We have assumed in the above discussion that fresh water in Aquifer B was degraded

by sea water intruding the system at point 1 (Figure VIII-1). This is probably the case

in the Oxnard Basin because the Oxnard aquifer outcrops close to land, perhaps one mile

from shore, along submarine canyons. The Mugu aquifer, on the other hand, is believed to

outcrop much further out on the continental shelf.

Nevertheless, in view of the preceding discussion, the question should be raised

as to the possible effects of vertical migration into Aquifer B at point 3. Here, sea

water just offshore could pass directlj* through the aquitard and mix with fresh waters

moving landward under the gradients developed by excessive pumping. Depending on the

circumstances and the distances involved, such migration might occur long before intrusion

at point 1 could reach the shore line.

Whether such intrusion can cause a significant degradation of fresh water in

Aquifer B depends on the conditions. If the average downward gradient across the
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Fig. VIII-1. Generalized cross-section of a

multiple aquifer system in a

coastal basin

overlving aquitard should reach 1 ft/ft over significant areas adjacent to the shore
2

line and the vertical permeability is the same as assumed above (0.02 gpd/ft ), then

the downward migration of sea water would again be 560,000 gpd per square mile of

exposed aquitard. Since this volume would enter Aquifer B just offshore and the

oroducing wells are onshore, the extent of degradation of fresh water sources would

depend largely on the rate of horizontal movement in the aquifer.

Onshore gradients in the Oxnard Basin have sometimes been of the order of 10 ft/

mile. If we assume Aquifer B is 100 ft thick and has a permeability comparable to that

2
of the Oxnard (i.e. 1,400 gpd/ft ), a hydraulic gradient of this magnitude would move

1,400,000 gpd through a vertical cross-section that is a mile long and 100 ft high. In

such a case, an offshore intrusion of 560,000 gpd would amount to 40 percent of the flow.

Of course, this is an oversimplification because the vertical gradients in the

aquitard will diminish in the seaward direction; and as the gradient diminishes, so also

does the rate of migration. However, if Aquifer B extends far enough out on the shelf

before outcropping, leakage of sea water into Aquifer B will simply mix and accumulate

in the aquifer waters as they move landward. Therefore, one need only consider greater

distances out under the ocean than the one mile assumed above to realize that significant

intrusion could occur in this manner.

The crux of the matter depends on the magnitude of sea water intrusion relative

to the volume of fresh water moving landward. If horizontal movement in the aquifer is
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the same as computed above and vertical gradients in the aquitard never exceed 0.1 ft/ft

out under the ocean, the intrusion of sea water into Aquifer B at point 3 may never

reach troublesome levels. On the other hand, if either the transmissibility of the

aquifer or the onshore gradient in this layer is significantly less than assumed above,

vertical gradients in the overlying aquitard would not have to reach 1 ft/ft to cause

degradation. This is a potential problem that cannot be ignored by those planning to

pump significant amounts of water from a coastal basin.

C. SEA WATER INTRUSION BENEATH MARINAS

A comparable situation arises on a smaller scale when a marina is constructed

in a coastal basin. As indicated at point 4 on Figure VIlI-1, the natural barrier

between sea water and Aquifer B can be significantly reduced by a marina. Under virgin

conditions, any leakage through this aquitard is vertically upward from the fresh toward

the saline environment because in the undisturbed state, the hydraulic head in Aquifer B

normally exceeds that of the ocean. As long as such conditions prevail, excavation of

the aquitard during construction of the marina harbor will not result in sea water

intrusion into Aquifer B.

Once withdrawal of water from this aquifer begins, however, the hydraulic gra-

dients can be reversed. Then the excavation of a harbor could lead to a potential

problem of intrusion. For example, if the marina covers an area of 100 acres, a downward

gradient of 1 ft/ft can move 87,000 gpd of sea water across the aquitard at point 4

2
assuming a permeability of 0.02 gpd/ft .

The seriousness of this intrusion will depend on the volume of leakage relative

to the volume of fresh water moving landward. As has been demonstrated above, horizontal

movement in Aquifer B can be estimated knowing the transmissibility and effective gradient

in the aquifer. Intrusion of this kind is much more localized and only threatens pumping

wells near the marina.

D. DEGRADATION FROM POOR QUALITY WATER

Water of poor quality often accumulates in semiperched aquifers overlying fresh

vi7ater systems. Abnormally high concentrations of constituents such as arsenic, boron,

or nitrate can render such waters particularly dangerous. If the hydraulic head in the

semiperched zone exceeds that of the underlying aquifers, as is normally the case, the

poor quality water moves downward. This is shown on Figure VIII-1 by the movement from

Aquifer A to Aquifer B at point 5.

Even a small downward movement of poor quality water can create a potential

problem. For example, in March 1970, the hydraulic head at the test site in the Oxnard
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Basin exceeded that of the Underlying Oxnard aquifer by 13 ft (Figure V-11) . The

aquitard between the two has a thickness of about 40 ft and a permeability of 0.02
2

gpd/ft . The steady state gradient of 0.3 ft/ft was therefore able to move 165,000

gpd vertically downward through each square mile of aquitard.

It would not be unusual for total dissolved solids in the semiperched zone to

build up to a level 10 times the accepted limits for drinking water. If such water

began leaking into the Oxnard aquifer at the rate of 165,000 gpd over only one square

mile, a horizontal flow of 1,650,000 gpd of fresh water would have to sweep through

this particular area to dilute the poor quality water down to acceptable levels. As

the area of contamination in the semiperched zone increased, the flow needed to suffi-

ciently dilute the degraded water would increase proportionately.

The maximum horizontal gradients that have been noted in the Oxnard area have

usually been able to move such volumes of water through the Oxnard aquifer. Gradients

of 10 to 15 ft/mile have been observed, and with a permeability of 1,400 gpd/ft , such

gradients can move from 1,400,000 to 2,100,000 gpd through a vertical cross-section

that is one mile wide and 100 ft high. Thus, at the moment, poor quality water in the

semiperched zone does not appear to pose a problem in the Oxnard area as long as these

waters do not accumulate undesirable elements in concentrations more than 10 times the

accepted limits.

If such concentrations should become too high, however, there would be a poten-

tial problem of serious degradation that could not be ignored. Concentrations of 20 to

50 times the accepted limit for dangerous elements such as arsenic, boron, or nitrate

would pose a real threat. Under such circumstances, an aquitard with permeabilities as

high as those found in the Oxnard Basin could not be considered an effective barrier to

migration of poor quality waters.

E. GROUND WATER RECHARGE

The above discussion has focussed on the difficulties that arise when aquitards

are leaky, but such beds can also play a significant role in recharging ground water

into a basin. For example, if the vertical gradient across the aquitard overlying the
2Oxnard aquifer is only 0.1 ft/ft and the permeability is 0.02 gpd/ft , the volume of

vertical recharge per square mile of aquifer amounts to 56,000 gpd, or about 63 acre-

feet per year.

If this rate of recharge through the aquitard persists through the 95 or so square

miles of Oxnard Basin that include the Oxnard aquifer, the total inflow from this source

would be about 6,000 acre-feet per year. This amounts to 13 percent of the annual ground

water supply of 46,000 acre-feet that has been reported in California Department of Water

Resources, Bulletin 119-17 [1965].
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Another Important source of water can come from storage in the aquitard layers.

This Is due to the fact that S , the coefficient of storage per foot of thickness, is

generally much higher in fine grained sediments than in the coarse grained aquifers.

In the area of the test site in this Investigation, S for the Oxnard aquifer was found
-6 -1

^ -4
to be 1.2 X 10 ft , whereas in the overlying aquitard, S ' was found to be 2.4 x 10

_i ^

ft , or 200 times higher (Table V-6)

.

Drawdowns in the aquifer will always be greater than those in the aquitard, but

a factor of 200 will more than offset such differences in terms of water release. For

example, one foot of drawdown in an aquitard only one foot thick will release as much

water as 10 ft of drawdown in a 20-foot thick aquifer. Thus, in multiple aquifer systems

where the combined thickness of the aquitards is much greater than that of the aquifers,

the contribution of water from storage in the former will clearly dominate. Using the

storage values cited above, a square mile of a 5G-foot thick aquitard will release 7.7

acre-feet of water per foot of drawdown; an adjacent 10-foot aquifer, only 0.008 acre-

feet.

This is not an important factor in the Oxnard Basin because hydraulic heads do

not continue to fall year after year but fluctuate depending on the relative magnitudes

of annual withdrawal and ground water recharge. In multiple aquifer systems, however,

where the withdrawals continually exceed the annual rate of recharge, the contributions

from storage within the fine grained sediments can be a dominant factor in the overall

water supply.

One must, of course, keep in mind that the rate at which water is released from

storage in an aquitard relative to the horizontal rate of movement in the much more

permeable aquifer will determine the importance of aquitard contributions to ground |

water supply. Nevertheless, those who prepare hydraulic budgets should not overlook I

the role of aquitards either from the standpoint of their storage capacity or from the

standpoint of the communication they provide with other parts of a multiple aquifer

system.

F. RATE OF MOVEMENT ACROSS AN AQUITARD

At this point, the question can be raised that if the permeability of an aquitard

is of the order of 0.02 gpd/ft (~10 cm/sec), how long will sea water or some other

nonpotable fluid take to move across such a bed.

The first problem is the length of time that must pass before the steady state

is reached. One dimensional, non-steady flow across any bed essentially ends when
2

dlmensionless time (t = a't/H' ) reaches a value of 0.1 to 1.0 [Carslaw and Jaeger, 1959,

p. 101]. We shall consider a bed that is 30 ft thick and from Table V-3, we note that a

hydraulic diffusivity (a' = K'/S ') of 0.15 cm/sec is appropriate for a permeability of
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0.02 gpd/ft . VJhen t = 0.1, we can calculate the time to reach steady state fi

2

^ -
"'

"d _ (30 X 30.48)^(0.1) _ „, ---
t - —^^i— = (0^5) - 557,000 sec

= 6.5 days (or 65 days, if t = 1.0)

Thus, if head changes suddenly on one side of an aquitard in the Oxnard Basin, steady

state flow conditions can be attained in a matter of days. The field pumping tests

verify this calculation (see Figures V-9 and V-10).

After the steady state is reached, an estimate of the time for fluids to move

across an aquitard can be made by calculating velocities from v = K i. Table VII-1

presents some results for two different permeabilities.

Table VIII-1. Time for fluids to flow across aquitards
under steady-state conditions

Case



Table VIII-1 also shows that if either the gradients or the permeabilities are

decreased, the time for pollution to occur is increased substantially. However, a de-

creased permeability implies a higher clay content and with it, the greater likelihood

that chemico-osmotic diffusion must be considered. This kind of coupled flow has been

discussed in Chapter VII, and examples have been worked out for an aquitard having a

2 -7
permeability of 0.002 gpd/ft (~10 cm/sec).

One should bear in mind that movement of salt ions is always present when sea

water is on one side and fresh water is on the other side of an aquitard. The process,

however, is complex because at first, the fresh water in the aquitard moves toward the

salt water and impedes the movement of salt ions into the aquitard. Later, this fluid

movement diminishes and the salt migration toward the fresh water begins to control.

As a result, movement by chemico-osmotic diffusion alone is very slow. This is demon-

strated by the results given in Table VII-1, where one sees that 800 years are required

for salt ions to diffuse from the Oxnard to the Mugu through 30 feet of an aquitard
2

having a permeability of 0.002 gpd/ft .

The process can be significantly speeded up if, in addition to the chemico-osmotic

effect, there is also a hydraulic gradient acting in the same direction as the concentra-

tion gradient. In the above example, a drawdown of 30 ft in the Mugu could shorten the

transit time to 170 years (see Table VII-1)

.

By comparison, the steady state results of Table VIII-1 indicate that salt water

moving only under the influence of a hydraulic gradient of the same magnitude (1.0 ft/ft)

would take 310 years to move across 30 feet of the same permeability aquitard. The

steady state result is almost twice too high because this approach neglects the fact that

movement under the combined action of chemical and hydraulic gradients produces a more

rapid rate of salt migration than can be taken into account by the simplified approach.

Thus, in attempting to calculate movement of sea water across low permeability aquitards
2

(<0.001 gpd/ft ), the steady state approach can lead to results that are in error on the

optimistic side.

Whether the transit time is 170 or 800 years may not pose a practical problem,

but as the thickness of the aquitard diminishes, the transit times for salt to pass

through the layer are drastically reduced. This has been brought out in Table VII-2,

where it was shown that transit time varies directly with the square of the aquitard

thickness. For example, the 170 years cited above for a 30-foot aquitard would become

only 19 years for a 10-foot aquitard.

On the other hand. Increasing the permeability of the aquitard up to the levels
2

found for the Oxnard Basin (K = 0.02 gpd/ft ) means that the migration will be much more

dominated by the hydraulic gradients that develop. Movement by diffusion will remain at

a relatively low level because this orocess is mainly dependent on: (a) the magnitude
- 5 2

of the diffusion constant for NaCl in water (D = 10 cm /sec), and (b) the concentration
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gradient that develops when sea water (or some other non-potable fluid) comes in contact

with one boundary of an aquitard. These two factors are not affected by an increase in

permeability.

If a coastal basin has aquitard permeabilities as high or higher than those

found at Oxnard, the process most likely to cause significant amounts of non-potable

waters to move across an aquitard will probably be that of movement due to a hydraulic

gradient. On the other hand, as the aquitards become clay-rich and their permeabilities
2

fall to levels of the order of 0.001 gpd/ft , the migration will be controlled by chemico-

osmotic diffusion. In this case, the only danger points will be where the aquitards that

must serve as barriers to the movement of fluids are too thin. In either circumstance,

careful control of hydrologic conditions must be maintained in any given area if sea

water intrusion through aquitards is to be eliminated. Such controls will, of course,

have to be integrated with any other operations that are required to prevent the usual

landward migration of sea water due to over pumpage.

G. DETERIORATION] AND SUBSIDENCE OF AQUITARD MATERIALS

As sea water invades an aquitard, there is the problem that a deterioration of

the clays may lead to an increase in permeability. In the field of petroleum, "swelling"

clays can cause a marked reduction in the permeability of sandstone in the presence of

fresh water, and this effect is easily reversed by replacing the fresh by salt water.

As discussed in Chapter VI, a number of leaching tests were performed on aquitard core

samples, but the results were Inconclusive. Part of the difficulty was the variability

of the aquitard samples which ranged from clay to fine sand (Table VI-1)

.

Table VI-4 shows that the predominant clay mineral found in the clay-size fraction

was montmorillonite. Sodium montmorillonite is one of the swelling clays, but an analysis

of pore waters from the aquitard cores at Oxnard revealed calcium and magnesium to be

the dominant cations present. Since calcium montmorillonite does not exhibit much of a

swelling tendency, this may be part of the explanation for a lack of change in permeability

due to leaching.

The question of subsidence is, of course, dependent on the degree of consolidation

that the aquitard materials will undergo. As was brought out in the theoretical calcula-

tions of Chapter VII, consolidation due to chemico-osmotic effects is negligible compared

to that induced by a change in hydraulic head on one side of the aquitard. After 25 years,

a drawdown of 30 ft was able to produce a total consolidation of 0.3 ft over a 30-foot

aquitard. This probably would not constitute a troublesome factor in the typical coastal

basin. Of course, subsidence is largely irreversible, and if & basin has thick deposits

of aquitards, the cumulative effect of continued lowering of hydraulic heads could lead

to significant settlements over long periods of time. This has been found to be the case
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in a number of instances [Poland and Davis, 1969].

H. NEED FOR FIELD OBSERVATIONS

All of these considerations lead one to the more general problem of the level of

field observation that is necessary in multiple aquifer basins where leakage across

aquitards poses a threat to ground water resources. Obviously, one must first know the

magnitude of the aquitard permeabilities; otherwise reliable estimates of leakage through

such beds will not be possible. In untested areas, this will require field investigations

and a certain amount of laboratory measurements similar to that of this work. As the

range of permeabilities that is possible for aquitard materials becomes better known, it

should be possible to develop correlations between permeability and other more easily

determined parameters. For example, such factors as grain size distribution and bulk

density, which can be obtained during the drilling of water wells, may lead to estimates

of aquitard permeabilities that are sufficiently accurate for most purposes.

Once the permeability of the aquitards (and presumably of the aquifers as well)

is known, appropriate measurements of hydraulic head across the particular aquitard that

is expected to act as a barrier must be made as often as one needs to know the degree of

leakage. Locations where critical problems of fresh water degradation may occur should

be equipped with enough observation wells so there can be no question as to the magnitude

of vertical communication. These wells should be placed in the aquitard under considera-

tion as well as in adjacent aquifers above and below.

Finally, it is concluded that in utilizing the ground water resources of coastal

basins, such as those of California, the ability of aquitards to control sea water

intrusion on the one hand, and to contribute to recharge on the other, must be carefully

evaluated in any effective program of water resource management.
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NOTATION

2 -1
a Coefficient of compressibili tv , LT M
V

B.. Vk.H.H.'/K. '
, L

ij 1 1 J J

C Compression index
"" -3

c Moles of solution per unit volume of solution, moles L
-3

c Moles of solute per unit volume of solution, moles L
= -3

c Maximum value of c expected during process, moles L
sm. s '^ 7-1

c Coefficient of consolidation, L T
V

2^-1
D Diffusion constant of solute, L T

e Void ratio

H Thickness of aquifer, L

H' Thickness of aquitard, L
-1 -2

J. Vector flow of solute relative to flow of solution, moles T L
_d _1 _2
J Vector flow of solution, moles T L

J Zero order Bessel function of first kind
-° -1 -2
J Vector flow of solute, moles T L
^ -1

K Permeability of aquifer, LT

K' Permeability of aquitard, LT

K Vertical permeability of aquitard, LT

k Permeability of aquitard, LT

k
,

Coupling coefficient, moles LT
en _

,

k, Coupling coefficient, moles LT^^ '

-1 -2
p' Pressure, ML T

-1 -2
p

' Initial pressure, ML T
° 3-1

Q Rate of discharge from aquifer, L T

2 -2 -1 -1
R Gas constant, ML T mole °K

r Radial distance from pumping well, L

S Storage coefficient of aquifer

S Specific storage of aquifer, L
^ -1

S
' Specific storage of aquitard, L

s Drawdown in aquifer, L

s' Drawdown in aquitard, L

s Dimensionless drawdown, AttTs/Q

T Transmissibility of aquifer, L T""*"
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T Absolute temperature, °K

t Time, T
2

t^ Dlmenslonless time in aquifer, at/r

t ' Dimensionless time in aquitard, a't/z
D -1 -2

U Pore water pressure, ML T

3 -1
V Volume of solution per mole of solution, L mole

Li

X Dimensionless ratio, c /c
s sm

z Vertical coordinate, L
2 -1

a Hydraulic diffusivity of aquifer, L T

2 -1
a' Hydraulic diffusivity of aquitard, L T

11

'K.'S .'

AH. V K.S .

- 1 SI

Number of moles of solution per unit volume of sediment, moles L

-3
Number of moles of solute per unit volume of sediment, moles L

-2 -2
Specific weight of water, ML T

-1 -3
Dissipation function, ML T
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ABSTRACT

This work is an attempt to make a comprehensive investigation of

transient fluid flow to a well in a multiple-aquifer system

Analytical solutions have been developed for the problem of flow

toward a well of infinitesimal radius that discharges at a constant rate

and completely penetrates an aquifer in a system composed of two aquifers

and one aquitard Solutions for a system composed of three aquifers and

two aquitards have also been derived. In addition, asymptotic solutions

for small values of time have been obtamed that give the drawdown distri-

bution in an aquifer which is enclosed between two aquitards. The solutions

for the two-aquifer system together with the asymptotic solutions have

been evaluated using the Zonneveld-Adams-Moulton numerical method of

integration and the results are presented in graphical form,

A complete solution to the problem described by Hantush in Case 1

of his "Modification of the Theory of Leaky Aquifers" has been developed,

giving the drawdown distribution in the aquifer at arbitrary values of time

since Hantush's solutions are only valid at small and large values of time.

The finite element method has been reviewed and was used to in-

vestigate the behavior of a two-aquifer system. The method was also used

to obtain an independent check on the analytical solutions and to examine the

basic assumption made in the analytical approach that the direction of flow

is essentially horizontal in the aquifers and vertical in the aquitards It was

found that this assumption will probably hold in most field situations,

A review of the methods that are currently being used to evaluate the

results of pumping tests in leaky aquifers has disclosed that these methods

are limited in application, A new approach to the problem of evaluating

multiple-aquifer systems that is based on the results of this investigation is

outlined This method needs further investigation before it can be applied

in the field.
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I. INTRODUCTION

When one is concerned with the flow of water to a well that is completed

in a single aquifer, there is a tendency to focus attention on the effects to be

expected in that particular aquifer. If the aquifer is effectively enclosed by

impermeable confining beds, the well known methods based on the Theis (42)

solution are easily applicable. More often, however, the aquifer from which

water is being withdrawn is part of a more complex geohydrological system.

Such systems can be thought of as a series of aquifers with intervening beds

of relatively low permeability. From a theoretical standpoint, at least, we

cannot confine our attention to the single aquifer that is being pumped but

must consider the effects of flow in the entire system.

We shall refer to such a geohydrological situation as a "multiple-

aquifer" system. When the flow of water through the confining beds is such

that the effects can be detected by observations of drawdown in the aquifer

being pumped, these beds are called "aquitards" and the aquifer is referred

to as being "leaky". When these effects cannot be detected within the aquifer,

the confining beds are called "aquicludes", and the aquifer is termed "slightly

leaky" (35). No matter how small the permeabilities of the aquicludes that

enclose a slightly leaky aquifer, the behavior of the entire system cannot be

understood if the aquicludes are considered impermeable and if the aquifer

is regarded as an independent hydrological unit. In nature, all aquifers are

leaky or slightly leaky and all aquicludes have some degree of permeability.

The fact that aquifers are part of more complex geohydrological systems

has long been recognized by ground water hydrologists. The phenomenon of

leakage into an aquifer was first analyzed by the Dutch engineer DeGlee in 1930

(4) , and by Steggeventz and Van Nes in 1939 (40) , Polubarinova Kochina

(38, p. 377-395) describes work that was done on the subject in the Soviet

Union during 1946-1947 by Myatiev(32 , 33) and by Girinsky (lO), In 1946,

Jacob (28) developed solutions to problems involving both steady and non-steady
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flow in an aquifer with vertical leakage. The approach used by all of these

authors is based on the following assumptions:

1. The permeabilities of the aquifers are much larger than those of the

aquitards, so that flow is essentially horizontal in the aquifers and

vertical in the aquitards

.

2. The rate of leakage into the aquifer being pumped is proportional to

the potential drop across the aquitard, which implies that under tran-

sient conditions the storage capacity of the aquitard is being neglected.

3. Head in the unpumped aquifers remains constant at all values of pump-

ing time (Polubarinova-Kochina has also investigated the influence of

pumping in one aquifer on the head in an adjacent aquifer under con-

ditions of steady state when the aquifers are separated by an aquitard} .

Employing these assumptions , Jacob and others were able to incorporate

the boundary conditions at the interfaces between the aquifer being pumped and

the aquitards into the differential equation which describes flow in the aquifer.

This step greatly facilitated mathematical treatment of the problem and as a

result, between the years 1949 and 1960, Hantush (13,17,18,19) and Hantush

and Jacob (14,15,16,20) have used this approach to develop a large number of

solutions to various problems involving flow in aquifers with vertical leakage.

One of these solutions (16) describes non-steady radial flow to a well completely

penetrating an infinite leaky aquifer and discharging at a constant rate. This

particular solution has been extensively tabulated (17) , and the resulting type

curves are being widely used by groundwater hydrologists to evaluate the pro-

perties and the yield of leaky aquifers (7 , 8 , 39 , 43 , 44 , 47 , p . 51- 56 , 68-70 ) . The

results of this solution are usually presented in terms of a dimensionless para-

meter r/B and the type curves are known as the r/B curves.

In 1960 Hantush (21) published a modified version of the differential

equations for flow in a lealcy system, in which for the first time, consider-

ation was given to storage within the aquitards. The modified differential
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equations have been applied by Hantush to the problem of non-steady radial

flow to a well completely penetrating an infinite leaky aquifer and discharging

at a constant rate. He was able to develop asymptotic solutions for the draw-

down in the aquifer, which apply only at small and large values of pumping

time. Hantush's solutions for small values of time have been extensively

tabulated (22) in terms of a dimensionless parameter /S , while his solutions

for large values of pumping time, for the case when the unpumped aquifers

have non-zero permeabilities, are similar in form to the r/B curves mentioned

earlier. However, since Hantush was unable to describe the flow in the aqui-

fer at intermediate values of pumping time, his modified approach has not

received proper attention and was not used in suosequent works on leaky aquifers.

Between the years 1961-1967, Hantush (23,24,26,27) and DeWiest (5,6) ana-

lyzed various problems involving flow in leaky aquifers but in all of these works,

storage of water in the aquitards was consistently neglected.

Prior to 1962, ground water hydrologists were mostly preoccupied with

the conditions in the aquifer being pumped and had given little consideration

to the effect of pumping on the confining oeds and on the unpumped aquifers

in a multiple-aquifer system. The importance of observing the drawdown in

an aquiclude which overlies a slightly leaky aquifer was pointed out first by

Witherspoon et al. (48) in connection with underground storage of natural gas

in aquifers. In 1966 Neuman and Witherspoon (34 , 35) developed analytical

solutions for the transient conditions in an aquiclude adjacent to a slightly

leaky aquifer which is being pumped at a constant rate. In their development,

the authors assumed that drawdown in the aquifer being pumped is prescribed

by the Theis solution (42) , and that drawdown in the unpumped aquifers remains

zero at all values of pumping time. The authors took into account the storage

capacity of the aquiclude and assumed that flow in this layer is essentially

vertical. An independent check on these solutions was obtained with the aid

of a finite difference model in which the direction of flow was unrestricted in

the aquiclude (34). The results have been extensively tabulated (47) and the
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authors have shown how these can be used to evaluate the permeability of an

aquiclude using field data from a pumping test (49,47,p. 62-68, 72-83, 86-92) .

The problem of the steady state behavior of two aquifers that are sep-

arated by an aquitard, when the drawdown in the unpumped aquifer is not

necessarily zero, was studied by Polubarinova-Kochina (38, p. 385-390) , as

mentioned previously. In 1967 Hantush (27) described the transient conditions

in such aquifers for a case in which a well of infinitesimal radius completely

penetrates one of these layers and discharges at a constant rate. In this work,

Hantush again assumed that leakage is proportional to the potential drop across

the intervening aquitard.

Thus far, all the work that has been concerned with the problem of non-

steady flow in leaky aquifers has either neglected storage in the aquitards or

ignored drawdown in the unpumped aquifers, or both. The assumption of no

storage in the confining beds implies that hydraulic gradients across these

beds are always linear. However, this is certainly not the case at small values

of pumping time because the disturbance created by pumping propagates much

faster through the aquifer than it does through the confining beds that enclose it.

At large values of pumping time, gradients in these beds may eventually become

linear, provided that the system reaches a quasi-steady state situation (35, Eq. 18)

On the other hand, the effect of drawdown in the unpumped aquifers may be

negligible at small values of pumping time, but at large values of time this effect

may be quite significant. Therefore, a complete understanding of flow in multiple-

aquifer systems requires that due consideration be given to storage of water in the

confining beds and to the variation in drawdown at each point in the system.

A description of flow in multiple -aquifer systems may be of importance

to a variety of engineering problems. In groundwater hydrology, there is the

need for a new method of pump-testing complex geohydrological systems which

enables one to effectively evaluate the properties of all the layers involved. The

methods that are currently being used by groundwater hydrologists are limited in

application and may often lead to misleading results.
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In the case when a coastal aquifer has been invaded by sea water, there is

the danger of leakage through the aquitards and degradation of potable waters in

the adjacent aquifers. A similar problem arises in connection with underground

disposal of industrial and nuclear wastes . An understanding of the behavior of

multiple-aquifer systems under conditions of pumping should be helpful in plan-

ning underground waste disposal and in designing adequate pumping patterns

for groundwater basins in which one or more aquifers have already been

polluted or invaded by sea water.

The withdrawal of water from unconsolidated clay beds due to intensive

pumping of the adjacent aquifers sometimes results in subsidence (36,37) which

can be detrimental to structures on the surface. A knowledge of the flow patterns

in such clays may help the soils engineer to predict and control the amount

of subsidence that occurs at a given location as a result of pumping.

In underground storage of natural gas, which is a new technology that

has gained acceptance in the United States and Europe during recent years, the

engineer must make certain that gas will not leak through the aquiclude that

overlies an intended storage reservoir. The problem of determining the

permeability of such an aquiclude is critical for the success of the project and

an understanding of flow in this layer is therefore essential (35,47,48,49) ,

In the present work, we shall present an analytical approach to the

problem of flow in two-aquifer and three-aquifer systems In our develop-

ment, we shall assume that flow is vertical in the aquitards and horizontal in

the aquifers and that the systems are enclosed between layers of relatively

negligible permeability We will allow the drawdown at each point in the system

to vary with time and will take into consideration storage of water in the aquitards.

The problem of flow in a two-aquifer system will also be investigated with

the aid of the finite element method of analysis, which is a new numerical technique

that has recently been adapted to problems of transient flow in porous media by

Javandel and Witherspoon (29) , The results obtained in this fashion will provide
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us with an independent check on the analytical solutions and will help us to

investigate flow patterns in systems in which the direction of flow in unre-

stricted in each layer.

Finally, the knowledge gained through these studies will be utilized in

developing a new approach to field testing multiple-aquifer systems. The new

method involves the use of a family of type curves which require that obser-

vation wells be placed both in the aquifer being pumped and in the aquicludes

or aquitards that enclose it. The method may require the use of highly

sensitive pressure transducers which must be lowered into the observation

wells to detect, with a minimum of time lag, the extremely small changes in

water pressure that take place in the confining beds at small values of pumping

time.
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n. ANALYTICAL SOLUTIONS

A . GENERAL MODEL OF A MULTIPLE-LAYER SYSTEM

The first step in developing analytical solutions to problems involving

flow in porous media is to adopt some generalized conceptual model for the

system being investigated. The model must be as simple as possible in order

to yield to the present day tools of mathematical treatment and still remain

representative of the actual physical problems involved. In problems that deal

with the flow of groundwater in layered systems, most acceptable schematic

models will usually fall into two major categories:

1 . Models constructed for the purpose of studying flow fields

that develop on a regional scale;

2. Models constructed for the purpose of studying the propa-

gation of local disturbances , in an existing flow field, created

by such diverse natural or artificial means as rivers , canals

,

ditches, drains, wells, artificial recharge facilities , etc. .

If the investigator is interested in studying the regional aspects of a

groundwater flow system, his model should include the regional boundaries of

that system. Therefore, models that describe regional flow patterns are

characterized by finite geometrical boundaries. On the other hand, a model of

infinite or semi-infinite extent may be more convenient when dealing with the

propagation of local disturbances. In this type of problem, it is mainly the

effect near and around the source of disturbance that is of primary interest.

For example, in the case of a pumping well, a zone of disturbance will be created

around the wellbore , This zone will grow with time as the disturbance propagates

away from the wellbore in all directions. As long as the zone of disturbance has

not reached the outer boundaries of the system, the disturbance may be regarded

as local and the system as infinite or semi-infinite. Infinite and semi-infinite
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models have the advantage of involving a relatively smaller number of variables

and boundary conditions that are easier to treat mathematically.

In the present work, we will be studying flow fields that develop around

a pumping well situated within a multiple aquifer system. We will restrict

ourselves to the case of a line sink that completely penetrates one of the

aquifers, and assume that the pump operates at some constant rate of discharge,

Q.

As a most general approach, consider a system of N horizontal layers as

shown on Fig. II-l. We assume that the layers are homogeneous, isotropic,

uniform in thickness, and infinite in

radial extent. We also assume that

at any point within the system the

flow is governed by Darcy's law,

that the system is an elastic porous

medium completely saturated with a

single-phase, homogeneous, slight-

ly compressible liquid, and that the

coefficient of storage remains

essentially constant during the

entire period of pumping.

With these assumptions , a

complete mathematical description

of the flow within our system can be

,^Q
y- ,' ^ ^ /



the initial condition

Sn(r,z,0) = fj^(r,z) (n-2)

where fn(i''Z) is not necessarily zero, the boundary condition

Sj^(«>,z,t) = (II- 3)

and the interface conditions

Sn(^'Zn,n+l't) = 3^+ i(r .z^ „+ i-t)

Kr
9sn

dz
Kn+1

8sn+l

9z

z = zn , n+ 1
z = zn,n+ 1

(n-4a)

(II-4b)

For the layer being pumped, we also have to consider the condition at the

wellbore

H,-

r>^-4
9sn

,

r —— dz
9r Q (n-5)

Eqs. ll-l through II-5 describe the initial boundary value problem for a multiple-

layer system that is being pumped at a constant rate.

B. MODIFIED MODEL OF A MULTIPLE-AQUIFER SYSTEM

The solution of Eqs. II-l through II-5 becomes extremely difficult when-

ever the number of layers N in Fig. II-l exceeds one. Several attempts to solve

this problem for two layers (N = 2) have resulted in solutions that are very diffi-

cult, if not impossible, to evaluate numerically. It is therefore essential that
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the model described in the previous section be somewhat modified before any

further attempt to solve the problem is made.

In the following discussion, we will adopt a model similar to the one

employed by Hantush in his treatment of the modified "leaky aquifer" problem

(21). This model is especially suitable for systems which involve layers with

alternating high and low permeabilities. In such systems the model includes a

minimum number of restricting conditions and, as will be shown later, yields

results of a fairly general nature.

Consider a system of N highly permeable layers (aquifers) that are

separated from each other by N - 1 layers with relatively low permeabilities

(aquitards) . A well of infinitesimal radius completely penetrates one of the

aquifers and discharges at some

constant rate Q. All the assumptions

mentioned in Section II-A with regard

to the geometry and flow properties

of the individual layers will also be

adopted here. The system is illus-

trated in Fig. II-2.

The basic assumption involved

in this approach can be stated as

follows: if the permeability contrast

between any two adjoining layers in

the system is sufficiently large, flow

will be essentially horizontal in the

aquifers and vertical in the aquitards

whenever one of the aquifers is being

pumped.

//• / / / /

(^ Q
/////// //// / ///////

Aquifer N

Aquitard N- 1

Aquifer N- 1

Aquifer 2

Aquitard 1

Aquifer 1

Fig. II-2. Multiple-aquifer system.

One immediate implication of this assumption is that all unpumped aqui-

fers must be thin enough so that the drawdown across their thickness may at any

time t be regarded as constant. The principle here is somewhat similar to that
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of a cooling fin (1, p. 141). No restriction on the thickness of the aquifer being

pumped is necessary since radial gradients that develop in this layer as a

result of pumping are much larger than vertical gradients due to leakage from

the adjacent aquitards. The effect of these assumptions on the overall quality

of the solutions will be discussed in Chapter IV.

Since there are no vertical gradients in the aquifers, Eq. II-4b cannot

be used and Eqs. II- 1 through II-5 are inadequate to characterize the flow in

such a system. A new mathematical formulation of the problem is therefore

necessary to suit the modified model.

Consider an aquifer of perme-

ability K^ and thickness Hj that is

overlain and underlain by two aqui-

tards of permeabilities Kj+j' ar^d K;',

respectively. An infinitesimal ele-

ment of the aquifer is shown in Fig.

II-3. We assume that flow in the aqui-

fer is horizontal and directed toward

the vertical z axis, which acts as a

line sink. Flow directed into the

element is considered positive.

According to Darcy's law,

flow rate into the element through

its X and y faces is given by Fig. II-3. Infinitesimal aquifer element.

-^x

Qx K^
9si

8x
Hjdy and Qv Ki

9sj

"9y Hidx

respectively. It should be remembered that for this case, both 9si/9x and

9Si/9y are negative. The inflow rate at the x + dx and y + dy faces is
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dSi

Q.x+dx
K.

1 ax
H^dy

9Qx
ax

dx

K
a^Si

i^"i^y-^iTr2 "i'"^^

and

as:

Q
a Sj

y+dy Ki^Hidx-Ki—2-Hidxdy
9y ay.

In the z direction, leakage rate into the element from the adjacent

aquitards is

Qz=Hi K ,^fiii:
j+i az

dxdy

Z=H;

and

%=0
as:'

K.' ^
J az

dxdy

z=0

Storage within the element decreases at the rate of

as;

Si— dxdy

and the continuity equation for the element may be expressed in the form

as,-

^x ^y ^x+ dx y+dy ^z=Hj ^z=0 1 a
— dxdy
t

-^

Substituting for the values of Q and simplifying, we obtain

3x2 ^ ay2
*"

Ti az

Ki' as-'

Ti az

z=Hi

1 a Si

Q!i
at

z=0
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because a!j = Sj/T^.

Using radial coordinates, a complete description of the flow within the

system can now be given as follows

.

Flow in the i-th aquifer:

a2si 1 9Si K.+
i'

as.+
i'

ar2 ^ r ar T.
+ -

9z

1 as;

a^ at

K.-as^

T^ az

Z;i,j+l 'i-J

(n-6)

s.(r,z,0) = So.(r,z)

Si(oo.Z,t) =

(n-2)

(n-3)

lim

r—
2TTKiHir

asj—- = - Q.
ar ^1 (n-7)

where Z; ; is the value of z at the interface between the i-th aquifer and the
'

' J

j-th



fashion is easier to handle analytically than the problem defined by Eqs. II-l

through II-5, and will therefore be adopted throughout this work.

C. SOLUTION OF TWO-AQUIFER PROBLEM

In the previous section, we discussed the way in which an initial boundary

value problem for a multiple -aquifer system can be formulated mathematically.

We now turn to the solution of a particular case where the system is composed

of only two aquifers separated by an aquitard. Our approach will be as follows.

After formulating the problem for the two-aquifer system, a succession of Laplace

and Hankel transforms will be applied to the differential equations and their cor-

responding initial, interface, and boundary conditions. The resulting ordinary

differential equation will be solved to obtain solutions in terms of the double

transform. The inverse Hankel and Laplace transforms of these results will

yield the desired solutions.

1. Formulation of Problem

Consider a system of two

aquifers separated by an aquitard

as shown in Fig. 11-4. A well of

infinitesimal radius completely

penetrates the lower aquifer and dis-

charges at some constant rate Q.

Each layer is horizontal, homo-

geneous, isotropic, and infinite in

radial extent. The system is satur-

///•



that drawdown across the thickness of Aquifer 2 is constant at any time t. If

the initial drawdown is zero everywhere in the system, we can use the results

of Section II-B to formulate the problem as follows:

a^'si 1 asj Ki' asi'

8r2 r dr T^ dz

Sj(r,0) =

s^{<«,t) =

lim ifl _ Q
r-*0 ^ dr ~

2TrTi

1 asi

tti "at"

z=0

(a)

(b) ) ^T^lll (U-9)

(c)

(d)
J

(pumped)

a^si' 1 asi'

aj_' ataz2

si'(r,z,0) =

s^Hr.O.t) = s^(r,t)

Si'(r,Hi',t) = S2(r,t)

(a)

(b)

(c)

(d)

) Aquitard 1 (11-10)

a2s2 1 as2 Ki' asi'
+ —

9r2 r ar T2 dz

S2(r,0) =

S2(",t) =

lim £f2
r— ^ ar

1 as^

Q^ at
(a)

(b) ) ._'^„?"'^1''„L. (n-11)

(c)

(d)

(not pumped)

Eqs

two-aquifer case

. II-9 through 11-11 define the initial boundary value problem for the
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2. Transformation of Problem

Let us apply the Laplace transform to Eq. Il-lOa, using the initial con-

dition (Eq. 10b) . We obtain

a^s^' p

az2 a^' "1 (n-12)

K we now operate on Eq. 11-12 with the zero order infinite Hankel transform

(see definition of Hankel transform in Appendix A), the result is

a^si' P
(n-13)

This is an ordinary differential equation that can be easily solved for Sj^'

s, ' = c, exp ( /p/a-j^' z ) + C2 exp (
- V p/a-j^ ' z

)
(U-14)

where cj^ and 03 are arbitrary real constants. The double Laplace and Hankel

transforms of Eqs. 11- 10c and Il-lOd are given by

and

s^'(a,0,p) = s^(a,p)

S;^'(a,Hi',p) - S2(a,p)

(n-15)

(n-16)

When Eqs, 11-15 and 11-16 are substituted in Eq. 11-14, we obtain two equations

in the two unknowns , c ^ and Cg

and

Sj^(a,p) = Cj^ + Cg

S2(a,p) = c-^ exp ( Vp/a^ Hj^') + C2 exp (- Vp/a^ ' H^'

)

-188-



Solving for c, and C2 and substituting the results in Eq. 11-14 will yield the

double transform of the drawdown in the aquitard

,

sinh ( V p/a-|_ ' z) sinh ( V p/ai ' (Hj^' - z) ]

'1' " sinh ( /pTo]^ H^') ^^ "^
sinh (Vp/af^ H^')

^^ (n-17)

The Laplace transforms of n-9a and Il-lla, considering n-9b and

Il-llb, can be written as

1 a

r a r

and

1 a

r a r

as^

r 9r



Applying the Hankel transform to Eqs. 11-18 and 11-19 and considering

Eqs. n-20, 11-21, and 11-22, we obtain the two equations

a^ Si +
Q

Si +
1 ' 2TrT^p ai

"^1
T-^ dz

z=0

and

(n-23)

a2s2--S2
Ki' asi'

^2 9^

z=H3^'

(n-24)

The derivative of Eq. 11-17 with respect to z is

as

dz
i- = V^Tv"

cosh ( Vp/a^' z) ^ cosh [ Vp/a]' (H^' - z) ] ^__—— S2 - S]_

sinh (/p/o;-,^' Hi') sinh ( VpT^ Hj^')

so that

ds^'

dz

and

aii

= Vp/oj'
sinh ( Vp/Q!j_' H]^')

Sj^ coth ( VpToP" H^') (n-25)

z=0

az
Vp/ai'

Si
i2Coth(V^7^Hi')-^.^j^^^^^7^j^-J (n-26)

z=Hi

Substituting 11-25 in 11-23 and 11-26 in 11-24, we obtain two equations in the two

unknowns, s-. and S2:
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9= Q p =

1 2-nT^^ a-^
1

and

a Sr, - So

2 = r—r——

—

r I . T.~T - Si coth (Vp/a, ' H/)
sinh (Vp/oj' Hj^') 1 \

i^/ i i /
(11-27)

Ki' Vp/^i'
S2 coth (/pTop" H]^')

SI

sinh (Vp/a^' H^^')

(n-28)

Let us define the functions

p Ki' Vp/ai'
Ai(p) , -. coth (Vp/ai' Hj^')

A9(P) = TT

Bi(p)

^+ ^ ^ ^ coth (Vy^ Hi')

Ki' Vp/ai'

Ti sinh (Vp/ai' H^')

2^^^ = T2 sinh (Vp/oij^' Hj^')
B9(P)

C(P)
Q

(n-29)

2TrTi p

Using these definitions, Eqs . 11-27 and 11-28 can be rearranged in the form

(a2 + A^) ii - Bi ^2 = C
(n-30)

B2 S-j^ - {2i + A2) S2 =
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Solving Eq. 11-30 for S]^ and S2 will give us the double transforms of the

drawdowns in the aquifers

C (a^ + A2)

and

'1 (a2 + Ai) (a2 + A2) - Bi B2

CB2

(a2 + A^) {SL^ + A^) - B^ B.

(n-31)

(n-32)

3. Inversion of Hankel Transform

The next step in our development is to invert the double transforms in

Eqs. 11-17, 11-31, and 11-32 back into the domain of the Laplace transform.

For this purpose, let us define the functions

D(p) V4Bi(p) B2(p)+ [Ai(p) - A2(p)]2

^1 (P) = 9 [Ai(p)+ A2(p) - D(p)] (n-33)

e2^(p) = - [A^(p)+ A^lp) + D(p)]

The denominator in Eqs. 11-31 and 11-32 can be rearranged so that

(a-^ + A^) {a'^ + A^) - B-j^ Bg =
I
a
„ Ai + A2 \2 D^
^ +

2

With this in mind, Eqs. 11-31 and 11-32 may be expanded in the forms
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C (a^ + A2)

D

and
1

S2
CB2

[

1

D [ a2 + ^]^2 a2 + ^^^

(n-34)

(n-35)

Using Eq. A-8 in Appendix A, the inverse Hankel transforms of 11-34 and 11-35

can immediately be written as

C (A2 - i^) ^ C (A2 - 12^)
Si(r,p) = Kodir) - Ko(e2 r) (H-SG)

and
CB2

i2(r>P) = -5- IKo(eir) -KQ(l2r)] (n-37)

where A, B, C, D, and | are functions of the Laplace transform parameter p

as defined in Eqs . 11-29 and 11-33. The inverse Hankel transfer of Eq. 11-17

is simply

sinh (Vp/ofi' z) _ sinh [Vp/ai' (Hi' - z)]

sinh (/pToP'Hi') sinh (Vp/ai' H^')

Eqs. n-36, n-37, and 11-38 give the Laplace transforms of the draw-

downs for each layer in the system.

4. Inversion of Laplace Transform

The inversion of Eqs . 11-36 and U-37 can be accomplished with the aid of

Mellin's inversion formula

s(r,t) ^I
y+ i°o

{e^^ - 1) s(r,A)dA (n-39)

y -1'
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which can be written in this form due to the initial condition s(r,0) = 0. Here

Y is some real positive constant, A is a complex variable replacing p in the

expressions for s(r,p), and i - ^^-l .

a. Determining Positions of Singularities

In order to apply Mellin's inversion formula to our problem, it is

necessary that we determine the poles and branch points of the functions

Sj^(r,A) and S2(r,X) in the complex domain of \. From the definition of C(p)

in Eq. 11-29, we immediately see that both of these functions have at least a

simple pole at A = 0. We also know from the definition of Ko(^r) that this

function has branch points at all values of A that are roots of the equations

^^(A) = and ^2(^) ~ ^- ^^^ first step therefore will be to determine the roots

of the equations

^l^(^)
= ^ [Ai{A) + A2(A) - D(A)] = (n-40)

and

|2^A) = i
[Ai(A) + A2(A) + D(A)J - (n-41)

where Ai and Ag are defined in Eq. 11-29 and D, i^, and I2 ^^^ defined in

Eq. 11-33.

Eqs. 11-40 and 11-41 can be written in the form

(Ai + A2)2 = D^ = 4B1B2 + (Ai - A2)^

so that

A1A2 -B^B2

Using the definitions in Eq. 11-29, this can also be written as
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A Ki' VVai'

a-^ <^2 '^l

coth (Wai' Hj^') +
A. Ki' V A/ai

'

"2
coth (VA/q^' Hi')

. ]^Li.VV ,oth2 (/X7V Hi') - ^l\^/% = (11-42)
T1T2

Let us define the complex variable

z E VX/aj^' Hi' (11-43)

and the real positive constants

«l'T2

and

b =

^I'Ti

(11-44)

,4
Q!lQi2Hl'

Multiplying Eq. n-42 throughout by ^ sinhz, and considering the

2 9
identity cosh z - 1 = sinh z, this equation becomes

2 2
z [ (ab + z ) sinhz + z (a + b) coshzj =

which imples that either z = or that the term in the brackets is zero. One can

easily verify that A = is a solution of Eq. n-40 but not of Eq. n-41. Thus,

A = is a branch point of Kq(6i r) and is not a branch point of Kq(|2 r)

.

K z 7^ 0, the term inside the brackets must vanish and we have

(ab + z^) (e^ - e-Z) + z (a + b) (e^ + e'Z) =
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When this is multiplied by e^ and solved for e^^, the result is

^2. __
^^^ab-z(a.b)
z'^ + ab + z (a + b) ^ '

27
Let z = X + iy, where x and y are real variables. The modulus of e is

e^'', so that from Eq. 11-45 we will have

e2x = l(x+ iy)^+ ab - (x + iy) (a + b) I

I (x + iy)2 + ab + (x + iy) (a + b)l

Evaluating the moduli in this equation and taking the square of the result,

we obtain

e4x . [x2-y2+ ab - x (a + b)]2+ y2[a+ b-2x]^
[x2 - y2 + ab + x(a + b)]2 + y2 [a + b + 2x]2 ^ '

where all the terms are real

.

If X > then e"^^ > 1, but the numerator in Eq. 11-46 is smaller than the

denominator because the constants a and b are positive by definition. This is

a contradiction, so x ji 0.

If X < then e^^ < 1, but the numerator in Eq. 11-46 is larger than the

denominator, which again is a contradiction. Therefore, x jl: 0.

The only possibility left is x = 0, in which case z is purely imaginary and

Eq. 11-46 is obviously satisfied. Eq. 11-43 therefore implies that the roots of

Eqs. n-40 and 11-41 are all real, non-positive values of the form

> 2 _^
"^ = - y Hi'2

Substituting in Eqs. 11-40 and 11-41 will reveal that there is an infinite number

of solutions Yjy to these equations. We therefore conclude that each of the
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equations l]^(A) = and l2(^) ^ ^ ^^^ ^^ most an infinite number of distinct

real, non-positive roots, A^, where n = 1, 2, 3

Our next step is to show that the equation D(A) = does not have any

real roots . For this purpose let

z E VA/a^' H^'

a^'Viyf^ / 1 1

VT^T^ /l 1
b E

Tl T2

where z is a complex variable and a and b are real constants. When the

expression for D^(A) in Eq. 11-33 is multiplied by (Tj^T2 Hj^'2)/(4K-[^'2) and

equated to zero, one obtains

2

+ a^z** + 2ab z^cothz + b^z^coth^ z =
sinh2 z

2
Multiplying by sinh z and solving for a, we get

- b coshz + i ^„ ^„^
a = — (n-47

z sinh z

Suppose that z is real and let z = x. Since a is real, the imaginary term

in Eq. 11-47 must vanish so that

x sinh x

This is impossible when x is finite, so z cannot be real. If z is imaginary,

let z = iy. Eq. 11-47 then becomes
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b cosy + i

2y siny

and since a is real, we require that

2y siny

which again is impossible. Therefore z is not imaginary, and A = z a-,' /Hi'^

is not real. Thus, the equation D(A.) = has no roots along the real axis.

Suppose that there exists some X = Xq which satisfies the equation

D(A.) = 0. Using the definitions in Eq. 11-33, Eq. 11-36 can be written in the form

^l^''''^^ " ^ [(A2 -Ai+ D)Ko(eir) - (A2 -Ai -D)Ko(e2r)]

where A, , A2 , C, D, t-^, and ^2 ^^^ ^1 functions of A. Since

lim ti = lim ^2

D— D—

we see that both numerator and denominator in this equation tend to zero as D

approaches zero. In order to apply L'Hospital's rule to our problem we note that

dKo(z)



which is finite because Aq is not real and therefore is not a root of i (A) = 0.

Similarly,

dKo(l2r)

dD D^O
-» -

X=Xr

which is also finite. Using L'Hospital's rule, the limit of Sj^(r,A) as \

approaches Xq can be written as

Q
lim si(r, A) =

A-Ao
, ^ - lim Ko(^ir)+ (A2-A1+ D)

^p

dKodgr)
^KQ(e,r)-(A,-A, -D)

^p

Q
4TrT^Ao Ko(eir) + Ko(e2r)

+
4
(A2-A1)

'

Ki(eir)
^

Ki(e2 r)

^1 ^2 '

A=Ao

which is finite because Aq is not zero and is not a root of l2^(A) = nor of

e2(^) - 0.

In the same way we can treat Eq. 11-37 using L'Hospital's rule to

show that

lim 89 (r, A)

Q

A— A„
4^rT^Xo^2

X=Xr

lim

D-*0

dKodir) dKo(e2r)'

dD dD

Q
4TrTi Ao

^
(

Kidir) ^ Ki(e2r)

^2 4
I i, %, X=X^
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which is also finite . Therefore , the roots A^ of D(X) are not singular points of

S-, (r , X) or of S2(r , A.)

.

Multiplying numerators and denominators in Eqs . 11-36 and 11-37 by

sinh (/x/a^ H-j^') will reveal that the roots of sinh (V X/ai ' H]^') =0 are

removable singularities of Sj^(r,\) and S2(r, A.).

b. Solutions in Aquifers

We have shown above that the only singularities in Eqs. 11-36 and n-37

occur at values of X that are singular points of the terms Kq(^i r)/A and

Kq(^2 ''^)/^ • ^ applying Mellin's inversion formula to our problem we can

therefore perform the integration along the contour shown in Fig. II-5 where

r and T^' are semicircles of radii e about the roots of either |i (A) = or

Fig. II-5. Contour of integration used with

Mellin's inversion formula.

y+ i)3

-200-



^2^^) ^ ^- ^® agree to choose our branch line along the negative real axis

and to perform the integration in a counterclockwise fashion.

If we omit the constant Q/(2 ttTj^) in Eq. 11-36, then the first term

becomes

2
^2-h Ko(eir)

D

Let Ia /-, denote the integi^al with respect to A of

along the AC portion of the contour, let Ip be the corresponding integral along

Tj^, and so on. Accordiiig to Cauchj-'s theorem, the integral along the entire

contour vanishes, and at the limit as e— and R— <» we can write

y+ioo

y-ioo

A2 -h^ Ko(eir)

D

lim

R-*°o

^AC "^ ^CD "^ ^DD' "^ ^D'C "^ ^C'A'
^

n=l

(n-48)

We now proceed to evaluate the limit of each integral on the right hand side of

this equation. On the DD' portion of the contour, let A. = e e^ so that

'DD'
= i \

[exp(£ei9t) - 1] ^ Ko[ei(EeiV]d9
J D(£ e^")

(n-49)
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The function Kq(A) can be expanded in the form

,2n

Ko(^)
= y + itn{-) V^^'^Z (n!)2

n=l

, 11 1

2 3 r
(n-50)

where y is Euler's constant and

In(^) Y (A/2)^"

Z/ (n!)2

n=0

We therefore see that as e approaches zero, all the terms in the expanded

series of KQ[|]^(e e ) r] vanish or remain finite, except for those terms that

involve Hn i-,. A glance at Eqs. 11-29 and 11-33 will reveal that the function

9 2 2 2
^j (A) is analytic everywhere except at the roots Aj^ = -m rr ai'/Hi' of the

equation sinh (/XTop" H]^') = 0, where m = 1 , 2 , .... Thus , there exists some

neighborhood around A = in which ^-^ (A) is analytic and can be expanded in the

Maclaurin series

e>) ^ a^^-^-a^,!.™*^...

where a™ is the first non-zero coefficient in the expansion. We can thereforem
write

lim (e^- l)£n[e^2(^)j - lim (e^ - 1) jCn(aj^ A"^+ ajn+ 1 A"""^ ^ + ajn+ 2 ^""^ + •

A— A—O
•)

lim (e-^ - 1) [m£nA+ fn(ani+ 3^^+!^+ 3^+2^^+ •••)]

A—

= (n-51)
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because

lim (e-^-l) {n A ==

while the second term in the brackets remains finite.

If we now make DD' in Fig. II-5 sufficiently small so that it is within

the neighborhood in which
^j^

(A.) is analytic, then from Eq. 11-50 we have

lim

A—
'DD'

2Tr

< lim

A—

.. A2(A) - li2(A)
(^ -^)

D(A)
^0(^1 ^) 2tt

A2(0) - ei^(O)

D{0)
lim

A—
(e^* - 1) £n A

because A = is not a root of D(A) - 0. Therefore

lim Ij3Q, =

e-*0

(n-52)

On r let A = Aj^ + e e^® where Aj^ is a root of ^^^(A) = 0. The integral

then becomes

Ip = i£
\ {exp[An+ £ei")t] - 1}

ei^de
(n-53)

9
Using the same argument as before, we can say that %^ (A) has a Taylor expan-

sion in some small neighborhood around A = Aj^ of the form

m+ 1
ei^(A) = a^(A - A^)"^ + aj^+ i{A - A^)"^^ ^ + . (n-54)
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where a^ is the first non-zero coefficient in the series. From what was said

earlier, we immediately conclude that

lim e Kq^i r) = lim e to {i-f r"^) = lim e { m £n (A. - A^) +

e— £— e— O

or A— Aj^

+ ti [a^+ ajn+i(A - An) + a^+2(^ " ^n) + . . .] + £n r^}= (0-55)

because the term in brackets remains finite. Again, if we make n, small

enough so that it is within the neighborhood of r^ in which l^ (A) is analytic,

then from Eqs. 11-53 and 11-55 we have

lim

e—
<lim
£—

or A-» A

{exp[(\j^+ EeiQ)t] - 1}

n

A2(An+ ee^'^) - ii^{X^+ e e^^)

D(An+ eei9)

ie, .19

'n77^ ^o^^i
""H

' ""

TT
A„t _

A2(An) - ei^(^n) 1
(e-n^ - 1)

D(An)
lim

£—
e Ko(ei r)

because A = Ajj is not a root of D(A) = 0. Therefore

lim Ip =

£-0 n
(11-56)

and similarly it can be shown that

lim Ip I

£— n
(n-57)
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On AC let A =ReiQ and

^AC I
AC

(e-^^ - 1)

A2(^) - ei^(A) Ko(eir)

D(A) X
d X (n-58)

From Eq. 11-33 we have

A2 - Sl^

D

A2 - Aj^ + D

2D

A2 - Ai

2 V4BiB2 + (Ai - A2)^

which remains finite as R— <» unless D(R)— 0. However, the latter possibility

can be disregarded because we have shown earlier that the roots of D(A) =

are not singular points of S]^(r,A) and S2(r,A). We can therefore, for the sake

of convenience, assume that D(A) has no roots at all and that the above expression

remains finite as R—00 . (Note that this is only necessary because we treat the

two parts of sj^ separately.)

The modulus I |]^(A)I approaches infinity as R approaches infinity. The

argument of ^i(A), which according to Eqs. n-33 and 11-29 is the same as the

argument 9 of A, is within the limits - tt < 9 < tt on AC . Therefore , for

large values of R, we can use the asymptotic expression

^0(^1 ^)^ M; ,-eir
(n-59)

On this basis we can now conclude that there exists some real constant M such

that

2,A2(A) - ei^(A) KpCeir)

D(A) A

^2(^ - ei^(A)

D(A)

V tt/2

R /f^e^l
< MR"^
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because all the expressions that appear here are bounded. We can therefore

use the lemma on p. 76 in Carslaw and Jaeger ( 2 ) to conclude that

lim I^Q =

R—oo
(n-60)

Similarly, it can be shown that

lim Ici^i =

R— oo

(n-61)

On CD, let A. = x^ e^^ in the first term of Eq. 11-36 and let

i^ = ^^(x^e^^). Defining the function

4 Ki'^ x2
D(x) = r^DCx^e^^'^) = r^

TiTga^' sin2(xH3^'//V)

1_ _±_
<^1 (^

oil 1 1 Ki' X "

x2+ (— -- -==rcot{xHiV^)
I2 111 va-L

1/2

(11-62)

and noting that ± i x coth (
±i xHj^'/Vo^) = x cot (xHi'/Vo!]^' ), we can write

the first term in Eq. 11-36 as

A2(x2e:^^^) -ei2(x2e±i^)

^(^) - D(x2e+i^)

2D(x) «1 «2
x^ + J_ 1 \

Ki'x

T2 ~ T
1/
7^ cot (X HiV/^) + - (n-63)

where f (x) is an even function of x. We can then write

c2t dx
lim IcD = 2 r {e-^--' - 1) f(x) KqH^^ v) f (n-64)

£ —
R— 00
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Now let us consider the integral of the first term in Eq. 11-36 along

D'C, and let A. = x2 e"^"^ and |^**E ^i (x^e"^^). Using these definitions

together with Eq. 11-63 we have

lim Ij),c,

e—
R— 00

I
2 \ (e

-x-^t
-1) f(x) Ko(ei**r)

dx
(11-65)

Let us define a new function

"1 (x)= Y
1 1 \ Kj'x 1

1

tVt; 7^7rcot(xHi'//^) + -D(x) (n-66)
1 ai'

and note that

cosh
'xHi'e±i^/2l xH

and

/op"

xe±iV2

cos
V at '

•xe

ai' /

±iTT

(11-67)

|xHi'e±i^/2\
sinh

/ ,

—

—

sin
xHi

'«l'

Using Eqs. 11-66 and 11-67 together with 11-33 and 11-29, we can write

(r^l*)2 = co]2(x)ei^

and (11-68

^^ (x) e~i^

Obviously, ^^ (^) is real and takes on both positive and negative values as

x changes between zero and + <». Eqs . 11-68 therefore suggest
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arg(r^]^*)^ = tt

when coj^'^ (x) >

and

arg (r
4]^ j = arg (r

^^^ )
=0 when co^^ (x) <

(11-69)

One can easily verify that

+ iTT/2
Iq (z e

) = Jo (z)

so that from 11-68 we have

Io(r^l*) - Iq^^^I**) -"- JohlW (n-70)

Considering the fact that the numerical values of even powers of (r I-,*) and

(r |-|^**) are identical and using Eqs. 11-50, 11-69, and 11-70, we see that

- • ' \2 T /v P^*v _ — ()„/»-?* *\ 2K^ivif*) -KQ(rei*) - 2^"(''^1*) ^O^^^^l*) "2^"^''^1**^ ^O^^'^l**)

I Joj^lW) [arg(rei*)^ - arg(rei**)2

i TT Jq|w]^(x)J when u)]^ (x) >

when to-|^^ (x) <

(11-71)

Combining this with Eqs. 11-64 and 11-65 gives for the first term in Eq. 11-36

—GO

lim {l^j^+ l^,^,) = - 2r(l - e-^^S f(x) lKo(rei**) - KQ(r
^i*) ]

e—
R—

dx
X

= -2TTi^ (1 -e-^ t) f(^) Jo|o.i(x)]
~

(11-72)
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where the function JqI'-^i (x) must be set to zero when w^^ (x) < 0. Substituting

this result together with Eqs. 11-52, 11-56, n-57, 11-60, and 11-61 into Eq. 11-48

and dividing throughout by 2 it i, we obtain

y+ ioo

2

1 f""'" ^, ,
A2(A) - ei^(A)KQ|ei(A)r)

^

y-loo

oo

y (1 - e-x t)
f (X) Jo(coi (X)) ^ (n-73)

The second term in Eq. 11-36 can be treated in a completely analogous

fashion. Let us define the function

0^2 (X) = i^i^(x) - D(x) (n-74)

and note that

A2(x2e±i^^ _^2(x2ei^^)

D{x2e^^^)

= f{x) -1

From Eq. 11-74 one can easily show by analogy to the previous development that

1 p .

.

A2(A) - e22(A) Kq e2(A)r
\ (e - 1) ' dA

2 TTi J ^ ' D{A) A

y-ioo

y (l-e->^^tj[f(x) -1] Jo(^2(^)| V (n-75)

We are now in a position to obtain the inverse Laplace transform of

s-,(r,p) in Eq. 11-36. For this purpose let
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G(x) E 1 - 2 f (X) (n-76)

such that [1 - G(x)] = 2 f (x) and [1 + G(x)] = 2 [1 - f (x)] . Substituting Eq. 11-36

in Mellin's inversion formula 11-39 and using Eqs. 11-73, 11-75, and 11-76, we

immediately obtain

+ (l+ G(x))jo(co2(x)j
dx
X

(n-77)

where the Bessel functions must be set to zero when their arguments are not

real.

In order to invert Eq. 11-37, let us define the function

g(x)^

B2(x2eii^) r^Ki'x

D(x2 e±i^) T2 ^^ D(x) sin (x Hi'/^fa^
)

(n-78)

Following the same development as before, we arrive at the inverse Laplace

transform of S2(r,p)

S2(r,t) =

1
yy+ioo

2ttTi D{\)
y-loo

^^y (1 - e-^ S 2g(x) [jo(^i(x)| - Jo("2(x)
1 dx^^ (n-79)
x

where the Bessel functions must be set to zero when their arguments are not

real.

In order to write Eqs. 11-77 and 11-79 in a more convenient form, let us

define a new variable
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a!i

and the dimensionless parameters

^Di

'11

21

11

'21

Q!l' r"

a. Hi '2

Oil' r^

Qi2 Hi '2

Ki'r-

Ki'r^

^1

I «2

(n-80)

The functions defined in Eqs. 11-62, n-63, 11-66, 11-74, and 11-76 may now be

written in the form

J4^ii^2iy^ 9
°(y) n-—Z2Z

—
-*" [(9ii-62i)y^ + n2i- ^ii)ycoty]

^, 1/2 1

2^

sin^ y

"1^ (y) =
2 f (^11 ^ ^2l)y^ - Clll+ ^2l) ycoty + D{y)]

"2^(y) = "i^(y)
-D(y)

> (n-81)

^<y) == ^^ f('2i - ^i)y' ^ <^ii - ^2i)y^°tyi

In terms of these definitions, Eq. n-77 becomes
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°° 2-

+ (l+ G(y)) Jo|"2(y)l d
(n-82)

The function in 11-78 will become g(y) = r\2iy/ (D(y) siny) so that Eq. 11-79

may be written as

Q
«2(r.t) =7^ \

(1-e -y^W i:!2i

D(y) Jor^i(y) - Jq "2(y)
siny

(n-83)

In both of these equations it is understood that the respective Bessel functions

must vanish when io-f (y) < and u^ (y) < .

c . Solution in Aquitard

To obtain the solution for the aquitard, it is necessary to invert the

expression in Eq. 11-38. From tables of Laplace transforms we know that

sinh (V p/ai ' z)

. sinh(/p7a^ H^'),

2ttq!i'

Hil-^
(- l)"nexp(-n^TT^tQ!i'/Hi'2) sin^

n=l
^

and

sinh[Vp/Q;i' (H^'-z)]

sinh(Vp/Qii' Hi'

on

2

(n-84)

= ~^ ^ (-l)"nexp(-n2TT2tai'/Hi'2) sin[nTT(l -:^)] (11-85)

^ n-1
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_ 2-; _ 2 2t
The convolution of the functions (1 - e ^ '^Di) and e " ^ Di is

(1 - e-y'S * e-"'^"^Dl= J(l - e-y'(^l"^/"l'')lexp[-n2.V(t-^)/Hi''] dT

Jt2 A^i— I (1 -e-y^V) exp(-n2Ti2(tD^-v)] dv

H^'2 1-e
-n2 jT^tjy^ e'^^^Di _ e'''^ ""^^Di

n^ tt2 /^2 - n^ TT^
(11-86)

where the dummy variable of integration T has been replaced by the dummy variable

V =Ta]^'/H^'2.

We must now use the Convolution Theorem ( 2 , p. 7) which can be stated

as follows. If 5c-|^(p) and X2{p) are the Laplace transforms of X]^{t) and X2(t), then

jc-|^(p) 342 (p) is the transform of

t t

xi(t) *X2(t) = Jxi{T)X2(t-T)dT = j^ xi{t - T) X2{T) dT

Applying this theorem to Eq. 11-38 using Eqs. 11-82 through 11-86, we obtain

Q V ,n /. n.zfr i-e-"'-'"^^!

n=l

ry^'^Dl _
g-n2 TT^-tD^ 1

y^ - n^ TT^

2^21

D(y)
ro(<^i(y)| - Jo('^(y))

siny

+ sin niT 1 -

"l.

1 _ e
""^ "^ '^Di e

-y^ tDi _ g
-n2 TT^ tDi

n2 tt2

' o"-

1 - G(y)) JqIcoi (y)) + |1 + G{y)| J^jc^
(y)j

y2 - n^ tt2

dill

y I
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Noting that

sin n IT 1
Hi'

, , n .
niTz

(-1) sin-^

we can multiply and divide the above equation by n tt so that upon rearranging

it becomes

si

n=l

2Ti2i(-i)"y

Vtt^
r, n Q 2 Y 1 . nuz rr, ViT^tD, e-y ^Dl - e'" ^

2Ti2i(-l)ny

tDi

D(y) sin y

Joh2 (y)|

+ G(y) - 1 Jo "1 <y)
D(y) sin y

+ G(y) + 1

y
{n-87)

where it is understood that the Bessel functions vanish when the square of their

arguments are negative

.

Eqs. 11-82, 11-83, and 11-87 together with the definitions in 11-80 and

11-81 give the drawdown at any point within the two-aquifer system at any time

t when the lower aquifer is being pumped at a constant rate Q. All that one has

to do in order to use these equations when the upper aquifer is being pumped

is to turn the model in Fig. II-4 upside down without making any changes in the

notation and numbering used in that figure.

d. Solutions for Case when Aquifers Have Identical Properties

In the special case when the two aquifers have similar hydraulic

diffusivities a and transmissibilities T, the functions defined in Eq. 11-81

reduce to
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DO')
2Tiy

siny

"l^ (30

"2^(y)

G(y)

ey2 - Tiycoty + -^^^
siny

ey2 - Tiycoty --^1^
siny

where 9 = (a^' r2)/(Q!Hi'2) and t] = (K^' r2)/(T H^') . With these definitions,

Eqs. n-82, 11-83, and 11-87 become

Q^ C ,. --y^tDi
Jo"ity)r Jo"2(y)

s,(r,t, .^Cu-e-^''-' JqN ^)

y

y

(n-88)

(n-89)

" °° „2t „2^t .

,, ^^
Q 2Vl . nuz rr VTT^tD, e-y ^Dl-e'" ^^"l

<^'^'') ^r^;Zn^^"li7J '"' ""^^
y2/(n2.2).i

• |[{- l)*" - 1
] Jojo^i (y))

-
[
(- 1)" + l] jQ|a;2

(y))| ^ (n-90)

where the Bessel functions must be set to zero when the squares of their

arguments are negative.

5. Reduction to Theis Solution

When the permeability K^' in the aquitard becomes zero, Eq. 11-82 re-

duces to the Theis solution. In order to show this, we first rewrite Eq. n-82

in terms of the variable

X = y ^/H^'
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so that Eq. 11-93 can be rewritten in the form

^1

2
where t^ = a^^t / r . Let us also define the function

X
_ r -t c-i

,

y (c,x) = \ e t dt

where x is a variable and Re c > 0. From tables of definite integrals

(11, p. 731) we have

f v-1 -ay2 ^ ^ ^ ^v-l -V b^

j y e ^ J^(by) dy = 2 b y(v^,^)

where b > 0, Rea > 0, and Re v > 0. The limit of y(c,x) as c approaches zero is

lim y(c,x)

c-0 If ^'

and we can therefore write

OO OO OO

f (1 - e"^ *Di) j^ (y)
^ = lun Cy'^-^e'^y J^,(y)dy - lim \y"^e~^^J^(y)dy
^ a^O^ a-^tD^^

V— V—

^i.-t

2J t 2J t

(n-95)
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where u, = 1 / 4tQ . Combining Eqs. 11-94 and 11-95, we obtain

which is the Thais solution.

In the case that 0^2 > a^, the second term in Eq. 11-93 vanishes and from

Eq. 11-91 we obtain

rx L, = rx / y/a-^

If we again change variables to y s xr / Va]^ , Eq. 11-93 wUl reduce to 11-94

which is equivalent to the Theis solution, as was shown above.

When Oo < a^, the first term in Eq. 11-93 vanishes and from Eq. n-91

we have

r X L2 = r X / Voj^

so that we again obtain the Theis solution for Aquifer 1.

Thus, the solution in the aquifer being pumped reduces to the Theis

solution when the permeability of the aquitard becomes zero. Obviously,

it is possible to use the development in Section II-C to derive the Theis

solution directly from Eq. II-9 simply by letting K-^' approach zero. We have

therefore inadvertently shown how the Theis solution can be obtained with the

aid of Laplace and Hankel transforms.
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'/^Q2

H.
"^

Ho'

H.,

Hi

^3
Z2=zi+ H2'

//.',,/ -/////

Aquifer 3

Ko'

Zi = H^'+ H2

Aquitard 2

K2
z=Hi'

Aquifer 2

D. SOLUTION OF THREE-AQUEFER PROBLEM

1. Formulation of Problem

Consider a system of three

horizontal aquifers separated by two

aquitards as shown in Fig. n-6.

Aquifers 1 and 2 are completely pene-

trated by wells of infinitesmal radii

that discharge at some constant rates

Q]^ and Q^ , respectively. Each layer

is homogeneous, isotropic and infinite

in radial extent. The system is an

elastic porous medium completely

saturated with a homogeneous, single-

phase, slightly compressible liquid.

Darc\'s law applies ever\"\vhere in the H^^

system, and the storage coefficients

in each layer remain constant with

time. We assume that Kj^' << Kj^,

Yi{ « K.y. K2' « K2. andK2' « Kg.

In addition, the thickness of each

unpumped aquifer must be sufficiently small so that drawdown across the thickness

of such an aquifer is constant at any time t.

If the initial drawdown in the system is zero, we can use the results of

Section II-B to formulate the problem as follows:

Ki' Aquitard 1

71
-V r

K, " Aquifer 1

/.'//// ////{' ' '///// / f / / / //^'
Q,

Fig. n-6. Three-aquifer system.

\

I

I
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9^ Si 1 9si Ki' 9si'

dr" r 9r 9z

s-,^(r,0) =

Sj^(oo,0) =

lim r

r—

9S]^ Qi

2ttTi

1 9si

Q!]^ 9t

z=0

(a)

(b) ^Aquifer 1 (11-96)

(pumped)

(c)

(d)

92 s^'



a2 S2' 1 a S2'

az2 " a^ at

S2'(r,z,0) =0

S2'(r,z^,t) = S2(r,t)

s^{Y,Z2,V) = S3(r,t)

a^sg 1 a S3 K2' as2'

ar^ r ar

S3(r,0) =

83(00,1) =

T3 az

lim r

r—

9f3
ar

=

1 as.

«3 9t

Z=Zr

(a)

(b)

(c)

(d)

(a)

(b)
,

(c)

(d)

' Aquitard 2 (11-99)

Aquifer 3 (H-lOO)

(not pumped)

Eqs. 11-96 through 11-100 define the initial boundary value problem for

the three-aquifer case.

2. Transformation of Problem

Let us apply the Laplace transform to Eq. II-97a using the initial condition

(Eq. 97b). Following the procedure outlined in Eqs. 11-12 through 11-17, we

obtain the double transform of s,',

sinh(/p7^^z) ^ sinh [TpTop" (Hi' - z)] ^

1 sinh(/^7a^Hi') 2 sinh (^ApTop" Hi')
^ (n-101)

By analog}', application of Laplace and Hankel transforms to 11-99 will result

in the double transform
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sinh[Vp/Q^' (z-Z]^)] ^ sinh [VpT^* {Z2 -z)]

^2 " sinh(Vp/Q;2' H2') ^^ sinh(Vp/a2' H2') ^
(n-102)

Here s-.' and S2' are functions of a, z, and p, and s-^, S2, and S3 are functions

of a and p.

If we apply Laplace and Hankel transforms to Eqs. 11-96, 11-98, and 11-100

and follow the procedure outlined in Eqs. 11-18 through 11-24, we obtain

a^si +
Qi Ki' 8si'

>^ aa^ So +

1 2ttT2^P a^

Q2

— Si +
1 Ti az

z=0

p _ K;^' asi'

22 ' 2 TTT2P C3i2
^^ T9 az

K2' 9S2'

T2 9z

z=H2^'

> (n-103)

Z=Zi

2= ±= ^2' 9S2'

^ ^3-^,3 ^3- T3 az

Z=Zr

As in Eqs. n-25 and 11-26, the derivatives of Eqs. 11-101 and 11-102 at the

various interfaces are

as-

az



Let us define the functions

AWp) E — +
P Ki'V^ToT

a^

p Ki'/pToi^

K5,' Vp/a.

coth (VpToP" Hi')

coth (Vp/ai' Hi')

coth (Vp/a2' H2')

An(p)
p K2'V^7^

'^S

coth (Vp/o^' H2')

^l^P^ ^ TiSinh(/i7^Hi')

^2(P) = T2Sinh(Vp/ai' H^')

K2'/p7^
^3(P) = T2Sinh(Vp/Q^' Hg')

^4(P) = T3Sinh(/p7^H2')

Ql

Q2
^ Z TrT2 p

(n-104)

•1

Substituting these definitions together with the above derivatives into 11-103 and

rearranging, we obtain

(a2+ Ai)^i -^ih = Ci

B2^1 - (a2 + A2) 12+^313 = - C2

6412 - (a2+ A3)l3 =
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These equations can be solved for s^^, S2, and S3;

M [(a^+A2)(a^+A3) - B3B4] + — Bi(a^+A3)M

B2(a^+A3)+ — (a^+Ai)(a^+A3)M
"^1 ^2 9

(n-105)

(n-106)

(n-107)

where

ME (a^+ Aj^) (a^+ A2) (a^+ A3) - (a2+ Aj^)B3B4- (a2+ A3)BiB2 (11-108)

3, Inversion of Hankel Transform

In order to invert the Hankel transform, it is desirable to rearrange

Eqs. n-105, 11-106, and 11-107 in a form such that we can employ Eq. A-8 of

Appendix A . Let us define

m E A-^ + A2 + A3

q E A^A3+ A2A3+ A^Ag - B1B2 - B3B4

n E A^A2A3 - A^BsB^ - A3B^B2

so that M in Eq. H-lOB becomes

(n-109)

Let

M E a^ + m a'^ + q a^ + n

X

y

6

o ma2.-

\ (3q - m2)

1 ?— (2m"^ - 9mq + 27 n)

U

V

(H-llO)

^

2 J 4 27 J

62 y3

4 "^ 27

1/3

1/3
(H-lll)
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and consider the cubic equation

M -x"^+yx+6 =

The roots of this equation are

U+ V U-V r-^

U+ V U-V r-^Xo = - —::;— - —
7,
— V - 3

Xg = U+ V

which in terms of a become

2 ^ _ U+ V U-V r^ _ m
^1

2 2 3

U+ V U-V
ao" = - —:— - —r- v - 3 - — >

a.2 = U+V-^

We can therefore write

X
M a^ + m/3+ 1/2[U+ V- V-3 (U-V)]

Y

(n-112)

a^ + m/3+ 1/2 [U+ V+ V^ (U-V)] a^ + m/3 - (U+ V)

where X, Y, and Z are unknown coefficients still to be determined. By bringing

the right hand side of this equation to a common denominator , we can equate

numerators on both sides,
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X a4+ |a2m - | a^ (U+ V) + ^ a^ ^Ts {V -Y) + ^ -f(U+V)+ y /^(U-V)

^(U+V)2 -^(u2-v2) + Y a^ + - a^ m - ^ a^ (U + V)

1 •" 1

-a2/r3(U-V)+
Y" -y (U+ V) -Y^^(U-V) - - (U+ V)^

V- 3 9 2
+ z a'^ + -a^m +a2(U+ V) + ^ + ^ (U+ V)

+ ^(U+V)2+ |(U-V)2

If we equate coefficients of equal powers of a on both sides of this equation, we

obtain

X + Y + Z

X
2 1 V^
-m--(U+V) + -^(U-V) + Y

2 1-m--(U+V) (U-V)

+ z m + U+ V

X ^-f(U.V).f/^(U-V,-i(U.V,2 -^ (U2 - v^)

+ Y

+ Z

m'^ m m , 1 o V-— --^(U+V) --/^(U-V) --(U+V)2+ —

^ -^(U+V)+ J(U+V)2+ |(U-V)2

-(U2-V2)

These are three equations in three unknowns that can be solved for X, Y, and Z"

X
V-3



Let us define

e^2(p)= ^ + 1 [ u+ v+ /T3 (v-u):

^2^(P)= ^+ i I U+V- V^(V-U)J (n-113)

m
3

e3'^(p)= ^ -u -

V

Using these definitions together with the above values of X, Y, and Z, the

expression for 1 /M can be written as

1_

M
3 (V - U) - 3 (U + V) 3 (V-U) + 3(U+ V)

6/^ (U3-v3) (a2+ 1^2) 6 /^(U^- V^) (a2+ ^2^)

+
U - V

3(U3_v3) (a2+ ^32)
(11-114)

We are now in a position to invert Eqs. 11-105 through 11-107 back into

the Laplace transform domain. In order to simplify matters, we will consider

the following cases: (a) drawdown in Aquifers 1 and 2 when only Aquifer 2 is be-

ing pumped (Ci = 0) and (b) drawdown in each aquifer when only Aquifer 1 is be-

ing pumped (C2 = 0) . In the first case, the inverse Hankel transform H"-*- of

Eq. 11-105 can be obtained by combining this equation with Eq. 11-114 and using

Eq. A- 8 in Appendix A. We obtain

"^1 =
6/r3''ff-v3)

H-l|[/^(V-U) -3(U.V)J^^

a2+A3 a2+ A3
+ l^-3(V-U)+ 3(U+V)]

-^2Ti^'-
2V-3(U-V)^^^-^

_^=A^L-^^|[/r3(V-U)-3(U+V)] (A3-ei2)Ko(eir)

+ [/^(V-U)+ 3(U+V)] {A3-e2^)Ko(e2r)

+ 2 /^ (U - V) (A3 - ^3^) Ko(l3 r)| (11-115)
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Similarly, the inverse of Eq. 11-106 is

S2 = 6/r3(u3-v3) {t^^(V-U) -3(U+V)] [AiA3-{Ai+A3)ei2 +

+ ^1^] Ko(eir) + [VT3 (V-U) + 3{U+ V)] [A^Ag - (A^+ A3) ^2^

+ ^2^]Ko(e2r)+ 2/^(U-V)[AiA3- (Ai+A3)e32

+ ^3^] Koilgr)} (n-116)

In the second case, the inverse Hankel transforms of Eqs . n-105

through 11-107 can be immediately written as

6/^(U3-V3) ^^^^ (^- ") -^^^^ ^>J [^2^3 -B3B4 - (A2+ A3)ei2

+ ^1*] Kodir) + [/^(V-U) + 3(U+ V)] [A2A3 - B3B4 - (A2+A3)e2^

+ ^2*JKo(e2r) + 2/^(U-V) [A2A3-B3B4 - (A2+A3)e32

6/:-3V3^v3)
{t^^^(V-U)-3(U+V)J(A3-ei2)Ko(^ir)

+ [V^(V-U)+ 3(U+ V)] (A3-^^) Ko(^2r)

+ 2 /^ (U - V) (A3 - Ig^) KqHs r)

}

C]^B2B4— {[/^(V-U) - 3(U+ V)]Ko(eir)'3 6V^(U3

+ [/^(V-U)+ 3(U+ V)] Ko(e2r) + 2/^{U-V)Ko(e3r)}

(n-117)

(11-118)

(n-119)

In all of these equations, A, B, and C are functions of the Laplace transform

parameter p as defined in Eqs. 11-104 and U, V, ajid | are functions of A, B,

and C as defined in Eqs. 11-109, 11-111, and 11-113.
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The inverse Hankel transforms of Eqs. 11-101 and 11-102 are simply

sinh(Vp7a^z) _ sinh [ VpTo^" (H^' -z)] _

^1 ^ sinh(/^7^Hl^ ^2 + sinh(Vi75ini7) ^1 (n-120)

and

sinh [ Vp/Qi2' (z -Z]^)] _ sinh[Vp/Q^' (z2-z)]

^2 = sinh(Vp/Qi2' H2') ^3 + sinh{A/i75^1l^ ^2 (0-121)

Eqs. 11-115 through 11-121 give the Laplace transforms of the solutions

in a three-aquifer system when one of the aquifers is being pumped. It is

obvious that the solution in any layer due to pumping of any aquifer in the system

can be obtained from these equations by symmetry and superposition.

4. Inversion of Laplace Transform

The inversion of Eqs. 11-115 through 11-119 can be accomplished with

the aid of Mellin's inversion formula (11-39). In order to apply this formula to

our problem we must first determine the poles and branch points of the functions

S2^(r,X), S2(r,A) , and S2(r,A) in the complex domain of X. From the definitions

of C-l(p) and C2(p) in 11-104, we see that all of these functions have at least a

simple pole at A = 0. In addition, the function Kg^r) has branch points at all

values of A that are roots of the equation 1(A) =0. It would therefore appear

necessary that we determine the roots of the equations l]^(A) =0, 12^^) ^ ^'

^2(A) - 0, and \J^{X) - v3(A) = before applying Mellin's inversion formula to

Eqs. n-115 through n-119.

A glance at Eqs. 11-111 and 11-113 will reveal, however, that the express-

ions for ^(A), U(A), and V(A) are very complicated, which makes it extremely

difficult to determine the roots of the above equations analytically. We have

shown that in the two-aquifer case the equations 4(A) = had at most an infinite

number of distinct non-positive real roots, and that the only terms in the

expressions for s(r, A) that could become singular were of the form KQ(|r)/A.
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Since the three-aquifer problem is merely an extension of the two-aquifer case,

it seems reasonable to assume that the behavior of the functions s(r,A) is

essentially similar in both cases. Therefore, in our following development

we will assume that the equations i-,{X) =0, ^2^'^) ^ ^' ^"^ ^3^^) ^ ^ have at

most an infinite number of distinct non-positive real roots , and that the roots

of U (A) -V (A) = are not singular points of s(r, A).

a. Solutions in Aquifers

Since all the singularities are assumed to lie at A = or on the negative real

axis, in applying Mellin's inversion formula to our problem we can use the same contour

of integration as in Fig. II-5. Therefore, by analogy to the two-aquifer case,

we can immediately conclude that

lim \ (e - 1) s(r,A) d A

e— "^DD',rn,rn',AC,C'A'

(11-122)

for all functions s(r,A) in Eqs. 11-115 through 11-119. We can now let

A = x^ e^ '"' on CD and A = x^ e~^
""^ on D'C . Multiplying the expressions in 11-104

by r and considering Eqs. 11-67, we are led to the following definitions:

Ao(x)

Bi(x)

"N

A, (X) = r^

A2(x)

X"

x2

Kj^'x xHi

Ki'x

cot
^1

L ^ T2/V
xHi' K2'x

cot , r- +

- ^2
x^ K2'x

cot
XH2'

T2^ cot
XH2'

"3 ^3^/^ V^ S (11-123)

K^ r2 X

T-,^ Vffj^' sin(x Hi'/VaP")
B3(x)E

K2'r2x

T2 Vag' sin (x H2'/V^^)

K-^ r2 X Ko'r^x
^2(^) T2 V^sin(xHi'/V^)

^4(x)-
T3V^ sin (x H2'/V^)
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Let 5j« E ei(x2el''), %*'^ Ii(x2e-'''), and

2 -

31 _i
3 2

[U+ V+ /^(V - U)]

H _i [u+ V- /^T(v-U)]

f.u.v

(n-124)

where m, U, and V are the same as before except that the values of A and B in

Eq. 11-109 are as defined in Eqs. 11-123. One can easily verify that

(r^i*)^
2 / ,

„i fT

"1 (x)e

and

(r^i**) = U2^(x)e-^^

(11-125)

which is similar to Eq. 11-68. Following the same argument as in Eqs. 11-68

through n-71, we obtain

Ko{r|^**) -Ko(rei*) = <

i-rrjQ coi(x) when co^ (x) >

when "^^(x) <

(n-126)

If for the first term in 11-115 we let

f(x)

Bi(x)

6/I^(U3-v3) [^^(V-U) -3(U+V)] [A3(x) + c.i'^(x)]

where U and V are functions of x, then by analogy to Eq. 11-73 we will have
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y+ioo

^I <^''-i)

y-loo

oo

Bi(A) [/^(V-U) - 3(U+ V)][A3(X)-ei (A)]

6Ar~3 (U3-V3)

dx-x^t
(1-e )f(x)JoWi(x)

X

Ko(eir)dA

(n-127)

where U and V are functions of A, and Jq w-j^(x)| must vanish when oji^{j0 < .

This is the inverse of the first term in Eq. 11-115. Before writing down the

entire inverse of 11-115, let us define a new variable

y E xHi' / V^

and the dimensionless quantities

ai't
tDi " H '2

6)

ttj'r^
J_

ij

'ij

«iHj'2

TiHj-

V99 =, VG.,T/e'22 21^^22

(n-128)

The functions in 11-123 can now be written as

A^(y) = - 9iiy2 + Ti^^ycoty

A2(y) = - 92iy^ + n2iycoty + Ti22V22ycot(v22y)

A3(y) = - 932 V22^y^ + Tl32^22y cot (v22y)

Bi(y) = Tiij^y/siny B3(y) = rigg V22y / sin (vggy)

B2(y) = •n2iy/siny B4(y) = 1132 V22y / sin (V22y)

(n-129)
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Using 11-127 as an example, the inverse Laplace transforms of Eqs. 11-115

through n-119 can be immediately written as follows for the case when only

Aquifer 2 is pumped (C-^ = 0):

Q
Si(i'.t) = 7

—

:::

I'

2 ir v2t"n
Bi[V-3 (V-U)-3(U+ V)J(A3 + o.i^) dy

<^-^ ')
2VT3(U3-V3) J0(-l)y

_y2fjj Bi [
/r-3 (V - U) + 3 (m- V)] (A3+ 002^) dy

2/^ (U3-V3) Jo("2)"

y2tD. Bi(U-V)(A3+o.3-^) dy
^

U3- v3 Jo('^3)- (n-130)

Q2 . y^tDT [V^ (V-U) - 3(U+ V)](Ai + ui2)(A3+ c^i^) dy
'^ 2VT3(U3-V3) J0K)y

-y^fm [^^(V-U)+3(U+V)](Ai+o.22)(A3+W2^) dy
+ \ (1-e -^ ^1)
I 2/^ (U3-v3) Jo("2)

r ,, -y2tDi (U-V)(Al + ^3^(A3+^3^
^ , ^

+
J

(1 -e ^) ^J^-^
J0("3)

y
(n-131)

For the case when only Aquifer 1 is pumped (C2 = 0)

,

Ql

HiM^'t) =^^ w^-^ "^)
y2tD^ [V-3(V-U)-3(U+ V)][(A2+c^f)(A3+ui2)-B3B4]

2/^(U3-V3)

oc

dy c
JoK)-7

+J 2/^ (U3-V3)

dy c -v2fn, t^^(V-U)+ 3(U+V)][(A2+ w2^)(A3+w^)-B3B4]
(1-e -^ ^'^ =- ^

I

dy

y

y2t- (U-V)[(A2+c^s^)(A3+a^;^)-B3B4] dyl

U3-v3 Jo("3)y(>(n-i32)
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S2(r,t) =
Ql

6ttTi

oo

y2tQ B^ [ /^ (V - U) - 3 (U + V) ] (A 3+ u^^) ^y
(1-e -^ "^1)

2 V^ (U3-v3)
Jo(wi)

y2t- B2[V^(V-U)+ 3(U+V)](A3+u:^) dy

y

OO

^
J(^-^

" ""')-"
2VT3(U3-V3) " " '^0(-2)

r -y2t-DT
B2(U-V)(A3+c^3^) _ dy

+ \ (1 - e ^)

u3-v3 '^0("3) (n-133)

QlQl Jr -y2t-n
B3B4[/^(V-U)-3(U+V)]

^3(r.t) = ^^ j(l- °^) 2/r3(U3-v3) Jo("i)-

dy

oo

+ \(l-ep _y2f B3B4[V-3(V-U)+3(U+V)] dy
y^-^ ^)

o,rr^nT3_...s. Jo("2)
—

y2t-D
B3B4(U-V)

2/^ {U3-V3) " " y

j(l-e-yV) ^3^^3^-^3 Jo(a.3)

00

+ \ (i - e
dy

y
(n-134)

In all of these equations , A and B are as in 11-129 and U, V, and w are

as in 11-111 and 11-124, respectively. Obviously, A, B, U, V, and oj are all

functions of y. In addition, the Bessel functions in these equations are under-

stood to vanish when the squares of their corresponding arguments, w , are

negative

.

b . Solutions in Aquitards

To obtain the inverse Laplace transforms of 11-120 and 11-121 we will

use the convolution theorem together with Eqs. 11-84 through 11-86 and 11-130

through 11-134. In analogy to Eq. 11-87, the required inverses are immediately

obtained as follows for the case when only Aquifer 2 is pumped (Cj^ = 0);
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Q? 2 ^^ 1^2 ^ ST ^ n TTz p
'(r,z,t) = -—— ) —sin \
^ ' ' ' 6TrT2 tt/^ n H^^' J

n=l

[/^ (V-U) -3(U+ V)]

1-e
-1^2 71-21;Dl^^

"y^^Di_„-n^^^tDi

{y2/n2 tt2) - i U3-v3

2V-3
[(- l)"(Ai+ W]2)(A3+ coi^) -Bi(A3+ c^i^)] Jq{^^)

[ V^ (V-U)+ 3(U+ V)J n 9 ? ?
+ ^ 77Z^ K-1) (Ai+o.22)(A3+o.22)-Bi(A3+o.2^)] Jo(o2V-3 '2)

+ (U - V) [
(- 1)" (Ai+ co32)(A3+ W32) - Bi{A3+ ^^)] J^i^^U ^ (n-135)

The drawdown S2'(r,z,t) in Aquitard 2 can be obtained from Eq. 11-135 by

symmetry and there is no need to write it down explicitly.

For the case when only Aquifer 1 is pumped (C2 = 0) , we have

-nVt-Di e-yV-e-"'"'"^Dl l

1+ 9 / o
(y^/n^TT^) - 1 U'^-V'^

7\
°° °°

Hi 2 "T^ 1 n TTz p

n=l

,
J [/^(V-^U)_^(U+V)]

^^_ i)nB2(A3+ u^)+ B3B4- (A2+ o.i2)(A3+ o.i2)] Jq(c.^)

^
[/^(V-U)J_3(U+V)] [(-i)nB2(A3+u2^+B3B4-(A2+c^2^)(A3+o.2^)] Jo(oo2)

2 V-3

Idj
+ (U-V)[{-1)"B2(A3+co|)+B3B4-(A2+'^3 )(A3+"3)i Jo("3)j

y (11-136)

Ql 2 Y 1 n-TTz' p
"

n=l L

Qi 2 v 1

n=l

[y^(V-U)-3(U+ V)]

-n2T^tDi
ry2tDi_g-n2TT2-tDi1 ^

(y2/n2 Tr2) - 1 u3-v3

[{-l)"B3B4-B2(A3+uji2)j j^^^^^

^
[/r3(V-U).3(U.V)]

t(_i)nB3B4-B2(A3..22)] Jo(
2 V-3 0('^2)

+ (U-V) [(-1)"B3B4-B2(A3+U32)] Jo(oJ3)| ^ (n-137)

where z' = z - (Hj^' + H2).
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Eqs. 11-130 through 11-137 give the complete solution to the three-aquifer

problem as defined in Eqs. 11-96 through 11-100. It is understood that in all of

these solutions, JqH = whenever w^ < 0. The functions A(y), B(y) , U(y) , V(y),

and ca(y) have been completely defined in Eqs. 11-123, 11-109, 11-111, and 11-124.

c . Remark on Nature of Solutions

Although the above solutions include complex numbers under the integral

signs (like V- 3, for example), it is easy to show that the integrands in these

equations are always real. From Eq. 11-111 we see that when (62/4 +y^/27) <0,

then U and V are conjugate complex functions

U = a+ ib

V = a - ib

where a and b are some real functions of y. In such a case (U"^ - V^) is imaginary,

(V-U) is imaginary, and (U+ V) is real. Thus (U - V)/(u3 - V^) and [V^ (V - U)

± 3(U+V)]/>/^ (U'^-V3) are both real so that Wj^
^ ^^^ ^ ^tnd cog^ are real. Con-

sequently, all the integrals in Eqs. 11-130 through 11-137 are real.

When (6^/4 + y^/21) > 0, then both U and V are real. Thus Wg^ ^g real

whereas ^i and 0J2 are conjugate complex functions , and so are [ V - 3 (V-U)

± 3(U+ V)]//^. Consequently, all the integrals involving 0J3 are real. Let

JqH) = u+ iv



where u, v, a, and b are some real functions of y. Consider Eq. 11-136 as an

example and write (c + id) for the brackets in front of JqC'*^!) ^^^ (c - id) for

those in front of Jo('^2) • '^^e first and second terms within the { } parentheses

become

(a + ib)(c + id)(u + iv) + (a - ib)(c - id)(u - iv)

which is real. The same argument can be used to show that all the integrands

in Eqs. n-130 through n-137 are always real.

5. Reduction to Two-Aquifer Solutions

When the permeability Kq' in Aquitard 2 is zero (see Fig. II-6) , the

drawdown in Aquifer 3 must also be zero, which is the same as letting K3 in this

aquifer approach infinity. In such a case from Eq. 11-129 we will have

A2(y) = - 621 y^+ Ti2lcoty

A3(y) = B3(y) = B4(y) =

From 11-109 we therefore have

m = A]^ + Ag

q = A1A2 - B]^B2

n =

and Eq. 11-110 becomes

M = a^ (a'^ + m a2 + q)

The roots of M = are

9 _ -m + Vm2 - 4q 9 _ ~ni - Vm^ - 4 q 9
ai" =

2
^2 -

2
^3 = ^
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However, the roots of M = are also given by 11-112. Equating these roots we

obtain

. 2 u+_v u-v
2 "^ 2

2 U+ V U-V ,

m
3



"1^ = -2<^1"^^2-D)

"2^ = "2 (^1+^2+ D)

w^ =

2 ?From Eq. 11-129 we see that (^-^ and ojg^ are the same as in Eq. n-81.

Consider Eq. 11-132. The third integral vanishes because

A^ = B3 = 0^0" = 0. The first integral becomes

I

2r -(D + A1+A2)
(1-e"^ ^Dl)

|(AiA2 + A22-A2D)+j(Ai+A2)2-|(Ai+A2)D+^
dv

'0 -(A1A2-B1B2) ^

where the numerator of the fractional term may be expanded as follows:

I
(D+ Ai+ A2)(-Ai^ + AiD+ A1A2 - 2B1B2)

- AiA^ -Ai2a2+ A^BiBa -A2B1B2+ DAiAg -B1B2D

- (AiA2-BiB2)(A2 A^+D)

Upon substitution in the above integral it becomes

3 f -y^tn, A2-A1+ D dy

and similarly the second integral in 11-132 becomes

-^ (l-e^ Di)
^ j^(^2) ^
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From Eqs. 11-81 and 11-129 we see that

Ao -Ai + D
^ ^ - = 1-G

D

A1-A2+ D

D
1 + G

so that Eq. 11-132 becomes

00

Qi f _ 2t j

Sl(r.t) =j:;^J(l-e"^ Dl)[{l-G)Jo(coi)+ (l+G)Jo(c^2)i-^

which is the same as Eq. n-82 for the two-aquifer case.

Let us now consider Eq. 11-133. The third integral vanishes because

A3 = w^ - 0. The first integral becomes

3
i?

2- -B2(D.Al^-A2)[-|(Al.A2-D)]

I ] <'- °^» D(A,A2-B,B2) ^0'"1>f
and since

-(A1+A2+ D)(Ai+A2-D) = 2(AiA2-BiB2)

it reduces to

Similarly, the second integral becomes

p -v^tn 2B2 dy
i^d-e^ tDl) —^ Jo(o.2) ^
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Since B2 = Ti2iy/siny, Eq. 11-133 reduces to

Ql r.. -v2tn. 2ri2i _ ^
dy^1 C -v^tr. ^^21

siny

which is the same as Eq. 11-83 for the two-aquifer case.

Eq. 11-136 for Aquitard 1 obviously reduces to Eq. n-87 for the two-

aquifer case, the proof being the same as for Eqs. 11-132 and 11-133. Using a

similar approach one can now easily verify that Eqs. 11-130 and n-131 reduce

to the symmetric counterparts of Eqs. 11-82 and n-83, as expected. This

becomes obvious by inspection since Eqs. 11-130 and n-131 are similar in form

to Eqs. n-133 and 11-132, respectively. The same is true with respect to

Eq. n-135 which reduces to the symmetric counterpart of 11-87.

Thus, the solutions for the three-aquifer case reduce to those for the

two-aquifer case when the permeability of Aquitard 2 becomes zero.

E. ASYMPTOTIC SOLUTIONS FOR SMALL VALUES OF TIME

The solutions obtained in Sections C and D for the drawdown in two-

and three-aquifer systems have complicated forms and are difficult to evaluate

numerically at small values of pumping time. To overcome this difficulty, we

will develop asymptotic solutions for small values of time that have relatively

simple forms and are easy to evaluate numerically.

Consider the dimensionless terms

tai' _ tQ;2'

relative to the two aquitards in Fig. II-6. Since p and t in the Laplace transform

are inversely related to each other, we can say that
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Vp/oji' H^' > vTo and Vp/og' H2' < /lO

whenever tr» < 0.1 and tn < 0.1. In such a case^D Dn

coth (Vp/ai' H]^') « 1 and coth (Vp/^ H2') « 1

and substituting in Eq. n-104 we obtain

Ai(p)

A2(P)

A3(P)

«1
^

Ti

p Ki'Vp/ai' K2'Vp/a2'

p K2'Vp7a7— +
'^S

T3

(11-138)

Consider Eqs. 11-105 and 11-106. Since a^ > 0, it is obvious that when

C2 = these equations can be approximated by

a'^ + Ai

^1^2
2 (a2+ Ai)(a2+ A2)

(n-139)

where Sj^ »S2- Similarly, if C^ = 0, then

^2^1
1 ~ {a2+ Aj^)(a2+ A2)

C2

a2+ A2

C2B4

3 (a2+A2)(a2+A3)

(n-140)

where S2 » s^ and S2» S3.
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Using Eq. A -8 in Appendix A we see that the inverse Hankel transform

of §9 in Eq. 11-140 is

S2(r,P)
Q2 ^0 i^"^)

2ttT2 P
(n-141)

and the inverse of Sj^ in Eq. 11-139 is

Ql Ko(r/A7)
si(r,p) «j—

P
(11-142)

From tables of definite integrals we have

OO

x^ \ dy
Ko(x) 2^^M- 4y ' y

and therefore Eq. 11-141 can also be written in the form

S2(J^.P)

Q̂̂̂
2 r

^ToP J
exp -y

4y y

Q e-y -

4ttT2 J y

_z2_ r
^T2 J

where

h(p) = -expj-p^l exp VF
Ki' r^ K2' r^

TgV^ T2VQ2' 4y

(11-143)

From tables of Laplace transforms we know that

— exp (-0 yfp) erfc
2vr (11-144)

where c > 0. Using this together with Theorem V in Carslaw and Jaeger ( 2 , p. 7)

we obtain
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L"-^ [ h (p) ]

erfc [f(y)]

when t

when t >
4Q;2y

where

f(y)
Ki'r2 K2'r^

TgVai' TaV^I 'y /t
4Q!2y

(n-145)

If we define the new dimensionless variable

'^iJ- 4 Hi ,/ KiC/^iCi
(11-146)

then

f(y)
^y(y-u2)

where U2 = r2/4Qi2t. Using Eq. 11-145, the inverse Laplace transform of 11-143

can immediately be written in the form

S2(r,t)
Q2

orfc
2 J y

1^2

'^2 r
^T2 J

(i321+/322)^"2

^y (y-u2)
!
d' (n-147)

which is equivalent to Hantush's solution for the so called "leaky aquifer" problem

(21, p. 3723).

The inverse of Eq. 11-142 is

Ql r e"^ ,
Si(r,t) = -——

- \ — erfc
^ 4ttTi J y ^y(y-ui)

dy (11-148)
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In order to obtain asymptotic solutions for the aquitards, let us consider

the case when Aquifer 2 is being pumped (Q^^ = 0) . We have seen in Eq. 11-140

that 12 is much larger than both s^ and S3. It therefore follows from Eqs . 11-101

and 11-102 that for points that are not in the immediate vicinity of the unpumped

aquifers , we can write

Q2 sinh (Vp/O]' z)

"^I'^^'^'P) "i^;^ sinh(/?7^Hi^
Ko(rVA^)

Q2 sinh [V]p7a^(z2 -z) ]

"^2'(^'^-P) «?;^ sinhlViT^Hsr""^^"^^

(n-149)

At small values of time such that /p/a2^ H.2' > ''^'^
= we have

sinh [ Vp/q;2' (H2'-z')J _ exp [ /p/q;2' (H2' -z") J
- exp[-\/p/Q!2' (H2'-z')J

sinh ( V p/q!2 ' H2') exp ( Vp/a2' H2 ')

exp ( - Vp/q;2' z ' )
- exp [ Vp/Q!2' (z '

- 2 H2
' )]

where z' = z - (Hi' + H2) • Using this together with Eq. 11-143, the second

equation in 11-149 can be written in the form

Q2 f e-y _
52'(r,z,p) ^j^^ ^

— g(p) dy (n-150)

where

1 _r
g(p) = -exp -p-

2 \

exp -vp
Ki'r^ K2'r^ z'

+ ,
+

4 1^ V ai ' y 4 T2 V 02 ' y Va;2'

exp ^ Ki'r2 K2'r^
+ 7=— +

2H2'-z'\

4T2Vai'y 4T2Va2'y Q!2'

Using Eq. 11-144 together with Theorem V in Carslaw and Jaeger (2, p. 7)

we obtain
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L'^[g(p)] =

when t
<

4Q!2y

erfc [fi (y)] - erfc [£2 (y)] when t >
4Q2y

where

oi2y)

(2H2'-z')/V^'

^2<y) = ^^)^
2Vt-r^/(4c.2y)

(11-151)

and f (y) is the same as in Eq. 11-145. In terms of /3 and Iq these functions

can also be expressed as

fi(y)
=

hiy) =

(/?21 +



Si'(r,z,t)
^2 r

4TTT2 J2 J y
"2

erfc
(J321+ 1322)^ + y(l-z/Hi')//4T5r

^y (y-U2)

erfc
(^21 + ^22)^+ y(l+ z/Hi')/V4Tdi

^y(y-u2)
dy (11-154)

In the case when Aquifer 1 is being pumped, the solution in Aquitard 1

IS

Qi r* e y r

,'(r,z.t) = ——- \ —^^ ' 4ttTi J y
^1

erfc
/3ll^ + y(z/Hi')//4T]^

Vy(y-ui)

erfc
Pll^hll + y(2-z/Hi')/V4tDi

Vy (>' - ui)
dy (n-155)

When Hj^' approaches infinity, the second part in Eq. 11-155 vanishes and the

expression reduces to Hantush's asymptotic solution for a semi-infinite

aquitard (34, p. 35, Eq. 54).

Eqs. 11-147, 11-148, 11-153, 11-154, and 11-155 are asymptotic solutions

for the drawdown in an aquifer that is being pumped at a constant rate and in its

adjacent aquitards. They hold when t^ < 0.1 andt]3„ < 0.2 and when z is not

in the immediate vicinity of the unpumped aquifers. This is the same as saying

that the above asymptotic solutions hold as long as the effect of pumping has not

become significant in the unpumped aquifers

.

F. COMPLETE SOLUTION TO HANTUSH'S MODIFIED "LEAKY AQUIFER" PROBLEM

The term "leakj' aquifer", as it is generally used by groundwater

hydrologists, refers to an aquifer that is overlain or underlain by aquitards which

permit a sigTiificant amount of water to leak into the aquifer as it is being pumped.

In Case 1 of his "Modification of the Theory of Leaky Aquifers, " Hantush (21)

treated the problem of a leaky aquifer where the supply of leakage to the aquitards
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comes from some highly permeable source layers. Hantush assumed that these

source layers are able to maintain a constant potential during the entire period

of pumping. On the basis of this assumption, he was able to obtain the Laplace

transform of the solution in the aquifer (21, p. 3722),

Q2 r-
S2(r,P) = ^7^Ko(r^A) (n-156)

where

p K^' /-p- / /p \ K2' rp" / fV~\
A(p) = — +^z- /—: coth Hi7

—

-A + -7^ /

—

- coth H2' / "T

Here Qq, T^, and 09 refer to the aquifer being pumped, K2', H2', and 0:2' to

the overlying aquitard, and Kj^', Hj^', and a-^^ to the underlying aquitard.

Instead of developing the general inverse Laplace transform of

s(r,p), Hantush restricted himself to asymptotic solutions for small and large

values of pumping time. Li order to develop the general inverse of Eq. 11-156,

it is first necessary that we determine the roots of the equation A(A) = where

the parameter p has been replaced by the complex variable A. For this purpose

let

z E VA/ai' Hi'

be a new complex variable. Multiplying A(A) in 11-156 by cx^^i /oii and

equating the result to zero, we obtain

z^ + a z coth z + b z coth (c z) =

where a, b, and c are real, positive constants. Since z = obviously does not

satisfy this equation, we can divide all the terms by z and write

g2z + 1 e2cz + 1
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If z = X + i y where x and y are real , then

2cz , 2cx, „ . . , , ,
2cx „ , . 2cx . ,

e + 1 _ e (cos 2 cy + ism2cy)+ 1 (e cos2cy-l) - le sin 2cy

e2cz -1 e2cx(cos 2cy+ isin2cy) - 1 (e2'^^cos2 cy - 1) - ie-"*^^sin 2cy

4cx „ 2cx
(e - 1) - 12 e sin 2 cy

e4cx + 1 - 2e2cxcos2cy

The sum of the real terms in Eq. 11-157 must be zero, so that

e4x _ I
g4cx _

2^

'^^ ^e4x+ 1 - 2e2xcos2y ^ '^ e4cx + i -2e2cxcos2cy "^ (n-158)

If X > , then e"^*^^ - 1 > , and

4cx , „ 2cx „ 4cx , „ 2cx , 2cx , 2
e +l-2e cos2cy>e +l-2e =(e -1) >0

so that all the terms in Eq. 11-158 are positive, which is impossible. If x < 0,

then e '^ -1 < 0, the denominators remain positive, so that all the terms in 11-158

are negative, which again is impossible. The only remaining possibility is that

x = and z is imaginary, so that

2 ^l'

We can therefore conclude that the equation A(X) =0 has at most an infinite number

of distinct, real, negative roots. This immediately suggests that in applying

Mellin's inversion formula (Eq. 11-39) to Eq. 11-156, the integration can be per-

formed along the contour shown in Fig. II-5 where r^ and Tn' are semicircles

of radii e about the roots of A(X) =0.

Let Iaq denote the integral with respect to A of

M Ko(rVA)
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along the AC portion of the contour, let Ip be the corresponding integral along
n

r^, and so on. According to Cauchy's theorem, we can write

y+ioo —
(e^^-1) -^ dA

A

r

-I
y -loo

lim

E-*0 n=l

(11-159)

If we let f (x) in Eq. 11-63 be equal to 1, then the results in Eqs. 11-52, 11-56,

11-57, 11-60, 11-61, and 11-72 are directly applicable to our problem and Eq. 11-159

becomes

V"^"" Kr.(vfk) p 2. , ,

-\ (e^t_i)_^^__ dA = -2TTi^ (1-e-x SJo("(x)|
dx
X

y -loo

(11-160)

where

w^(x) =

j,2 ^2 p2 j^^i
jj r'^ Ko' X

-. cot (xHi'/VaP) -^TT^, cot (xH2'/^')

and where it is understood that Jq (to) = when <jj (x) < 0.

If we define a new variable

y E X Hi' /v^

and use the definitions in Eq. 11-128, then from Eqs. 11-39, 11-156, and n-160

we obtain

^2 r ,2t
y'tDi,

JoW^(y)
dZ

(11-161)

where

'^^(y) = 021 y^ - 1121 y cot y - 'n22^22ycot(v22y)

and where the Bessel function must be set to zero when i^(y) < 0.

-250-



Eq. 11-161 is the general solution to the problem described by Hantush

in Case 1 of his "Modification of the Theory of Leaky Aquifers" (21).

G. REDUCTION OF THREE -AQUIFER SOLUTION TO THE COMPLETE
SOLUTION OF HANTUSH'S MODIFIED "LEAKY AQUIFER" PROBLEM

Consider a special case of the three-aquifer problem described in

Section D where the permeabilities Kj^ and Kg in Aquifers 1 and 3 approach

infinity . In such case , the drawdowns in these aquifers remain zero when

Aquifer 2 is being pumped at a constant rate. This situation is the same as

that described in Section F. and the solution to this problem is given by Eq. n-161,

Che therefore expects that Eq. 11-131 should reduce to Eq. 11-161 when Kj^—

«

and Kg— <» .

From Eq. 11-129 we see that when K^ and K3 approach infinity, then

Ai(y) = AgGO = Bi(y) = B4(y) =

so that m, q, and n in Eq. 11-109 become

m = A2(y)

q =

n =

Substituting these values in Eq. H-lll we get

Y = - A2^/3 5 = 2A2^/27

so that U=V = -A2/3. Using these values in Eq. 11-124, we get

2
A2 1 '' A2 A2\

'^l



Thus, the first and second integrals in Eq. n-131 cancel each other, and we

remain only with the third integral . Now

(U-V) ^^3 _ ^3^
_

^^2

U3_v3 " u2+v2+UV " A^ A^ A^ ~ ^

so that Eq. 11-131 reduces to

where

co32(y) = -A2(y) = 02iy^- ^2iycoty - Ti22 V22ycot(V22y)

which is exactly the same as Eq. 11-161.

H. RELATIONSHIP BETWEEN DIMENSIONLESS QUANTITIES
USED AND THEIR SIGNIFICANCE

All the solutions that were developed in this chapter can be written in

the general form

s - T-^ Sd (n-162)

where

4TTTp

s drawdown

Q rate of discharge

Tp transmissibility of aquifer being pumped

and sq is a dimmisionless quantity that will be referred to as "dimensionless

drawdown". For example, Eq. 11-161 can be written as
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Q2

where

,2

SD = 2J"(l-e-ySjoK)lf

Similarly, the Theis solution can be written in the form of Eq. 11-162 so that

the dimensionless drawdown for this solution is

OO

'D = I
~'y
y

l/4tD

The quantity t^ will be referred to as "dimensionless time in the aquifer being

pumped," or simply as "dimensionless time".

In the case of a one-layer system composed of a single aquifer , the

drawdown at any point is given by the Theis solution. In such case, sj) is a

function of only one dimensionless quantity

Sj) = f(tj3) (n-163)

Since the functional relationship (Eq. n-163) between Sq and t^v is known, one

can use matching techniques to determine values of sj) and tjj that correspond

to some known values of drawdown s and pumping time t that were obtained

through measurements in the field. Assuming that the geometry of the system

is known, one can now use Eq. 11-162 together with the definition

at kt
D r2 cpc^T^

to deter viiTe ihe unknown quantities k and cpc for itit- aquifer. Thus, in the case

of a single-layer system, the Theis solution pro\'ides us with two dimensionless
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quantities, Sj) and t£),that enable us to determine the two unknown properties of

the aquifer, k and ipc.

In a multiple -aquifer system there exist two unknown quantities in each

layer that are of interest to the hydrologist: (a) the permeability k, which is

indicative of the flow properties of the layer, and (b) ipc, which is related to

the ability of the layer to store liquid and to the elasticity of the saturated

medium. A complete solution to the problem of flow in a multiple-aquifer

system must therefore involve a number of dimensionless quantities that are

twice the number of layers in the system. In addition, these quantities must

be such that they enable one to uniquely determine the values of k and cpc for

each layer in the system.

We saw that in the case of a single-layer system, the solution was

given in terms of the two dimensionless quantities Sq and tj). Consider now

the two-aquifer system shown in Fig. II-4. The drawdowns in each layer of

this system are given by Eqs. 11-82, 11-83, and 11-87 and all of these solutions

depend on the dimensionless quantities defined in Eq. 11-80. One can easily

verify that when Aquifer 1 is being pumped, then tp, = Qntj). Therefore, it

follows that the solutions in all of these three layers are given in terms of the

six dimensionless quantities

Sj), tj), e^^, e^^, Ti^^, andTi2i

Obviously, knowing the values of these quantities will give us six equations in

six unloiowns that can be solved for k and cpc in each layer. Similarly, Eq. 11-129

shows that the solutions for the three-aquifer case depend on the ten quantities

^D' *^D' °11' ®21' ^22' ^32' ^11' ^21' ^22' ^i^^ ^32

because the system here consists of five different layers.
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Consider now a multiple -aquifer sj^stem that is composed of n different

layers. If one plots the dimensionless drawdown Sq at some point in the system

versus the dimensionless time tj) in the aquifer being pumped, one obtains a

curve that is characterized by (n - 1) values of 9j: and by (n - 1) values of ti-

Li the case of the Theis solution, n = 1 and the curve of sp versus tj) is unique.

Since the drawdown s is directly proportional to sq and pumping time t is directly

proportional to tp, one can use graphical matching techniques to determine the

values of Sq and tj) that correspond to some known values of s and t as measured

in the field. However, when the number of layers in (.he system is larger than

one, there will be no unique relationship between Sq and t^. Instead, one will

obtain an infinite number of such curves, each corresponding to some given

values of 6^; and r|. ..

J * J

An interesting feature of the asymptotic solutions for small values of time

that were developed in Section II-E is that they always involve a maximum of four

dimensionless quantities. For example, Eq. II-15U involves the qua:'itities

^D' ^D' ^02' ^d(/^21+ ^22)

and Eq. 11-148 involves only

Sq, tj), and/?^;^

This fact will be utilized in Chapter V to develop practical methods of evaluating

multiple -aquifer systems with the aid of pumping tests.

Using the definitions in Eqs. 11-128 and 11-146, one can taslly verify that

the following relati'jiships always hold:

'Bi h-M

(n-164)
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where r/B^; has been defined in the nomenclature. The reason that we are using

B-- and r/B.. in this work is that these quantities have been introduced into the

literabure by Hantush and Jacob (16,21 ) and are now widely accepted by ground-

water hydrologists.

Eq. 11-164 shows that solutions written in terms of 9j: and r\^-

can also be expressed in terms of the corresponding quantities
/3ij

and r/Bj;.

Therefore, from now on we will express all the solutions that were developed

in this work in terms of the dunensionless quantities

^D' ^D' ^ij'
^^dr/B.j

which will make these solutions directly comparable to those of Hantush and Jacob.

I. NUMERICAL EVALUATION OF SOLUTIONS

The solutions for the two-aquifer case and the asymptotic solutions for

small values of time have been evaluated numerically using the Zonneveld-Adams

Moulton numerical method of integration. The particular program employed in

the evaluation was developed by Dr. Loren P. Meissner, Lawrence Radiation

Laboratory, University of California, Berkeley, and it is available from the

Computer Center Library at the University upon request.

The method has been applied to evaluate Eqs. 11-82, 11-83, 11-87, 11-148,

and 11-155. Except for Eq. 11-87, the evaluation of these equations with the aid

of the above program is straight forward and does not require any further comment.

To evaluate Eq. 11-87, it is useful to note that the integral in this equation

converges to two different limits as n approached infinity; one limit for odd values

of n and the other for even values of n. It was found by exijerience that in most

cases this convert,'.' nee is so rapid that the integrals for odd and even vnlics of n

may be considered constant after just a few terms in the series. If, in addition,

one also considers the fact that the integral is independent of z/H' and that the
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term sin (n tt z/H') repeats itself in cyclic order for any given value of z/H' , one

may be able to reduce the computer time necessary for the evaluation of this

equation to a minimum.

In most cases the asymptotic solutions, Eqs. 11-148 and 11-155, can be

evaluated much faster than the general solutions, Eqs. 11-82, 11-83, and 11-87,

because they do not involve oscillating functions.

The numerical results obtained in evaluating the two-aquifer solutions ^
will be discussed in Chapter IV

.

1

3

m
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IIL FINITE ELEMENT METHOD

In the previous chapter, two separate mathematical models of a multiple-

aquifer system were discussed. The first model, described in Section II-A , had

relatively simple geometry but involved complex boundary conditions which made

the protjlcm intractable analytically. We therefore had to resort to further

simplification by imposing certain restrictions on the directions of flow in

various parts of the system and limiting the thicknesses of the unpumped

aquifers. This laid the ground work for a modified mathematical model which,

although less representative of the actual situation, could nevertheless be solved

analytically (Section II-B)

.

However, the use of a simplified model raised two questions: (a) To what

e.xleiil du the analytical solutions I'opresenl the true beliavior of a multiple-

aquifer system and (Is) what is the true behavior of such a system? Our ability

to answer these questions seems to depend on the development of numerical techniques

which are well adapted to modern digital computers and require a minimum

numl)er of restrictions on the geometry and flow projjerties of the system.

Thus far. none of the conventional finite difference techniques seem

to completely satisfj^ these requirements. Recently, however, a powerful new

numerical technique has been introduced into the field of groundwater hydrology.

This technique is esiaecially well adapted to high sj^eed digital computers and can

easily handle problems that involve flow in anisotropic, heterogeneous porous

media with complex boundary conditions . We are referring to the little

known finite element method of analysis which, although new to the field, has

already demonstrated its usefulness on several occasions (29,41,46,50,51).

The history of the finite element method and its development from the

direct stiffiijss scheme, initiall}' employed in the aircraft industx'y and various

branches of structural engineering, to the pi^esent use of variational principles

-259-



in conjunction with the finite element discretization, have been reviewed by

Javandel and Witherspoon (29). Attention is directed here only to those works

which pertain directly to heat conduction in solids and to fluid flow in porous

media. Zienkiewicz and Cheung were the first to apply the finite element

method to problems of steady state heat conduction in isotropic solids (50).

Later, Zienkiewicz, et al. (51), used the method to investigate steady state

flow of fluids in anisotropic porous media. The method was further extended

by Taylor and Brown (41) to account for free surface boundaries in steady state

seepage. In 1964 Gurtin (12) developed the variational principle for linear

initial value problems which enabled Wilson and Nickel (46) in 1966 to apply the

finite element method to problems involving transient heat conduction in aniso-

tropic, heterogeneous solids of arbitrary geometry and complex boundary

conditions. Their approach was further modified and adapted to flow of slightly

compressible fluids in porous media by Javandel and Witherspoon (29) in 196H.

In the present work the finite element method was used to obtain a

numerical solution for the problem of transient flow in multiple-aquifer systems

described by Eqs . II-l through II-5. The results were then utilized to investi-

gate the true behavior of such systems and to obtain an independent check on the

analytical solutions developed in Chapter II.

A general description of the mathematical principles that underlie the

finite element method was given by Javandel and Witherspoon (29), using matrix

notation. In the following discussion we shall present in detail, from a some-

what different view point, those aspects of the theory which pertain to the partic-

ular computer program employed in this work. Indicial notation will be used and

particular emphasis will be given to the explicit evaluation of all the matrices

which enter into the computer program.
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A, VARIATIONAL PRINCIPLE FOR INITIAL VALUE PROBLEMS
INVOLVING FLOW IN POROUS MEDIA

Let us consider a saturated, anisotropic porous medium whose

permeability, Ky, is a symmetric 3x3 matrix which may be a function of the

space coordinates*. The average flow velocity vector, vi, at any point in the

medium, is given by Darcy's generalized formula

Vi - -Kij ~ ;i,j 1, 2, 3 (UI-1)

The equation of continuity for a small element in the medium can be expressed

as

Bx^ at \ -'

Eqs , III-l and III-2 may be combined to obtain the partial differential equation

which governs flow in the porous medium. In the particular case when the

liquid is slightly compressible, the governing equation becomes

' (K,i^) -Ssl! <in-3)
axi • iJ axj ' ''at

Eq. Ill- 3 together with the initial condition

s(xi,0) = So(Xi) (ni-4)

define the initial value problem for flow of slightly compressible liquids in

porous media

'For a short di.-scussion of the indicial notation, refer to Ajjpendix B.
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Gurtin (12) showed that Eqs. Ill- 3 and in-4 can be translated into a

variational problem. To show how this is done, we first define the convolution

of two functions , f-[^{t) andf2(t), as

t t

fl(t)*f2(t)- Jfi(t-T)f2(T)dT = yfi(T)f2(t-T)dT (HI-S)

Using this definition, Gurtin arrived at the following

Lemma : A function s(x^,t) satisfies the initial value problem defined by

as as

xi ^^iJaxj) ~ ^s 9t

S(Xi,0) = So(Xi)

(III- 3)

(m-4)

if and only if it satisfies

^
(^u^iz:) = Ss(s-So)

axi ' ij axj
(UI-6)

Proof : Assuming that Eqs. III-3 and III-4 hold, we can use Eq. 111-5

to write

a ,,, as a f ^, a
, ^ ,

^

— K-:*-^) = r— \ Kii^ sxi,T dT
ixj ij axi axi J *J axi

J

t t

Sg [s(Xi,t) - s(Xi,0)] = Ss(s-So)

which shows that Eq. III-6 is satisfied.
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We can now icverse the argument to demonstiale that if Eq, III-6 holds,

then

t

'

t

= Ss(s-So) S^^ — s(Xi,T)dT

which completes the proof of the lemma.

The lemma leads to the following.

Corollary : The variational principle for the initial value problem,

defined by Eqs , III- 3 and in-4, is the same as the variational principle for the

problem defined by Eq. III-6.

On the basis of this corollary, Gurtin proved the following.

Theorem : Let T be the set of all functions s(x^,t) which, together with

their first derivatives, are continuous in some region R and satisfy the boundary

conditions

s(Ai,t) = U (UI-7)

where A = A-]^ + A2 is the boundary of the region R, and U is a prescribed function.

We will refer to T as the set of "admissible functions," since they satisfy all the

constraints of the variational problem

.

For any admissible functions s e T, at any time t € [0,oo)
, we define the

functional

V
Ss«-«^Kij*|^'-*|^ -2S3S*So| dV

-2\ Kij * U * s dA2 . (m-8)

A2

-263-



where V is the volume of the region R and U is a prescribed function such that

9s

an
= U ; n - outer normal to A2 {ni-9)

The variation, 6 fi(s)^ of this functional vanishes at a particular function s e T

if and only if s is the solution to the following initial boundary value problem:

ax;
(Ki

as
iJ ax

]

)
=

as

at

s{xi,0) = ^(Xi)

s{Ai,t) = U
(m-io)

Is
an

u

The details of the proof have been given by Javandel and Witherspoon (29)

and will not be repeated here

.

The immediate result of this theorem can be stated as follows. Suppose

that one is able to find an admissible functionjS(xi,t), which minimizes the

functional ^(s) in Eq, III-8. One would then have the solution for the initial

boundary value problem defined by Eq. III-IO. Thus, instead of dealing with a

problem that involves partial differential equations, one can now deal with another

problem that involves searching for some admissible function which minimizes the

functional ^(s). We shall refer to such a function as the "minimizing function".

It should be mentioned that in the case of real physical problems, the existence

of a minimizing function is always guaranteed through the known existence of a

solution to the corresponding initial boundary value problem.
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B. PRINCIPLES OF THE FINITE ELEMENT METHOD

In the previous section, we have defined our variational problem and have

shown that its solution may be obtained in the form of a minimizing function.

We will now turn our attention to the "direct variational methods" of finding such

a function for a given variational problem.

Most direct variational methods involve the construction of a minimizing

sequence

{sn} = si, S2, ... , s„ (m-ll)

of admissible functions s t T, such that

lim Sn - s (111-12)

n— oo

where s is the minimizing function, and

SI (lim Si^) = lim i1{s^) - i2(s) (ni-13)

n— oo n— oo

where ^(s) is the greatest lower bound of f2 taken over all the admissible

functions s £ T. From Eqs. III-12 and 111-13 we see that if s is the solution to

the variational problem then the functions of the sequence { s^} can be considered

as approximate solutions to the problem (9).

In the well known Rayleigh-Ritz method, which is of particular interest

for the following discussion, the functions of the minimizing sequence { s^} are

taken as the linear combination of a finite number of linearly independent

admissible functions, Uj £ T,

^n = aiui+ a2U2+ ...+ anU^ (HI- 14)
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where a- are arbitrary real coefficients. When s^ from Eq. Ill- 14 is

substituted for the minimizing function, s, in the functional ^(s), the latter

becomes a function of the n independent variables aj^, 3.2, ... , a^. The

next step is to choose the values of aj^. 3.2^ • • • , ^n ^ such a way as to

minimize the functional i2(Sj^). This is done by differentiating ^(Sj^) with

respect to each coefficient a^ and equating the results to zero,

^^^ = 0;i = l, 2, ... , n {ni-15)
8 a.

Eq. 111-15 represents a set of n simultaneous linear algebraic equations in the

n unknowns aj. Solving these equations and substituting the results in Eq. III-14

will yield an approximate solution to the variational problem at hand. As previous-

ly mentioned, the exact solution is given by the limit of the sequence { s^} as n

approaches infinity.

Usually, the more complex the boundary conditions of a given variational

problem, the more difficult it is to find a sequence { s^ } which satisfies these

boundary conditions. One way of simplifying the problem is to divide the region

into a finite number of elements (or subregions) and define the functions Sj^

separately for each element. The finite element idealization is particularly help-

ful because (a) it is usually much easier to find a sequence of functions { Sj^}

which satisfy the constraints of a problem defined over a small region with simple

boundary conditions than of a problem defined over a large region with complex

boundary conditions and (b) the smaller the domain of definition of a given se-

quence of functions { s^} , the faster this sequence approaches the minimizing

function. In other words, the smaller the elements, the fewer the terms needed in

Eq. 11-14 in order for s^ to be a sufficient approximation of the exact

solution. This means that there are two ways for the minimizing sequence to

converge to the true solution: (a) by increasing the number of functions u,^ in

Eq. in- 14 and (b) by decreasing the size of the elements while keeping the number

of functions u^ in Eq. IE- 14 constant.
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Fig. in-1. Two dimensional triangular elements.

[After Zienkiewicz (50)]

Fig. III-2. Axisymmetric element with constant triangular

cross-section.
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In the following analysis , the Rayleigh-Ritz method will be used in con-

junction with the finite element discretization to solve the variational problem

defined by Eqs . in-7 through III-9 for two dimensional and axisymmetric porous

media. The medium will be divided into triangular elements in the two

dimensional case (Fig. III-l) and into concentric rings of constant triangular

cross-section in the axisymmetric case (Fig. III-2) . In both cases, the solution

will be a function of only two space coordinates, r and z.

C. CONSTRUCTION OF MINIMIZING SEQUENCE

Since we are dealing with real physical problems, the solutions in each

element are analytic and can be expanded in a power series. It is therefore

convenient to construct the minimizing sequence { Sj^ } (Eq. Ill- 14) for any

element e in the form

^n = ai+a2r+ a3Z+ 34 r^H- a5 rz+ a5Z^+ ay r^+ . . .
^ a^ r"^~^z^ (III-16)

where

(m + 1) m
n = ^

—^— + k+ 1
,

Sn is a function of r, z, and t, and ai are functions uf t. The values of a^ for

each element must be chosen in such a way that the functions s^^ satisfy the

boundary conditions for their respective elements and minimize the functional

S^(Sjj) over the entire medium.

If the elements are sufficiently small , drawdown within each element

may be approximated by a linear function and Eq. III-16 reduces to

s = a+br+cz (III-17)

Considering a typical triangle (Figs. III-l and III-2) , let Sj^, S2 . and S3 be the

values of drawdown at the nodal points 1,2, and 3, respectively. Since s in

Eq. III-17 must satisfy these boundary conditions, we can write
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a + b r^^ + c zj^

S2 = a + br2 + CZ2

S3 = a + b r3 + CZ3

(ni-18)

Solving for a, b, and c and substituting in Eq. 111-17, we obtain

^ = 2^ t(^l^ ^1^^ '^l^)^! "^ (^2+b2r+ C2Z)S2 + (a3+b3r+ C3Z)S3] (EI-lB)

where

^1 = ^"223 - ^Z'^1

^2 = rszi - rj^Z3

a3 = riZ2 - r2Zi

bi =Z2 - Z;

bo = Z'

bo = zi - Zf

ci = rg - r2

C2 = ri - rg

C3 = r2 - ri

(ni-20)

and

2 A = twice area of triangle 1,2,3 (ni-21)

Obviously, s is still a function of r, z, and t, while s\, S2, and S3 are

functions oft only. Since s in Eq. III-19 satisfies all the constraints of the

variational problem for any element e, it may be considered as an admissible

function for that particular element.

D. MINIMIZATION OF THE FUNCTIONAL

The next step is to determine the values of the drawdowns s^, S2, and

S3 at the nodal points of all the elements in the medium so as to minimize the

functional ^(s) in Eq. 111-8. For this purpose we again choose a representative

element, e, (Figs. UI-l and ni-2) , and define the 1 x 3 matrix
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N^ = — (an+bnr-cnz) (III-22)

for that element. Using this definition, Eq, JIl-19 can be rewritten in the form

s = NnSn aJI-23)

Substituting Eq. 111-23 in Eq JJI-8 . the functional ^ (s) for the element becomes

^ (s) =
j

Sg Nn Sn * N^^ s^ + K^j »
—

- Sn - -^- s^ - 2 Sg Nn Sn - Nm Sq^^ d V'
e

ye

2 \ Kn - U * NnSndA^ /m-24>

A^

where V is the volume of the element and A is the surface area across which

U has been prescribed,

The functional for the entire medium, ^(s), is the sum of the functional

s

for the individual elements, ^ is).

^(s) = > n^ (s) rm-25)

Let us suppose that the nodal points in the medium have been numbered in

sequential order from 1 to N where N is the total number of nodal points.

We now want to determine the values of Sj^ so as to minimize the functional

^(s). Remembering that Sn are functions of time and that ^(s) involves inte-

gration with respect to time as well with respect to the space coordinates,

Eq., 111-15 cannot be directly applied to our problem In order to minimize

^ (s) with respect to Sn, we replace Sn (t) by Sjj (t) + r "n <t) where t is an

arbitrary constant and r\(t) js a continuously differentiable function which

vanishes at t = and t = t , The functional in Eq, 111-25 now becomes
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"n(^) = ^U J
[ssNn jsn(T) + eTi(T)

^J 9xi

NmSm(t-T) »-

\

Sn (T) + e Ti (T)
'm

- 2SsNn Sn(T) + eTi(T)NmSom

t *

'

A^
^ '

^ «m(t-T)

d T d V® -

dTd A® (HI- 26)

The minimum value of this functional with respect to Sj^ is obtained when

de
e =

Thus.

d£
£=0

2n*^< I [ssNnN

- S„N„N_Sn„ dV^

9Nn 9Nm
9xi 9xj

^s ^^n ^"m ^Om ^ Kij*UNn dA'

AS

=

Since fi is arbitrary, we obtain N equations of the form

VJ r r
9Nn 9Nm

2^< j SgNnNmSm+Kij*-^ -^^ Sm - SsNnNmSom

-^ Kij^UNndA^i =

A© J

d V"" -

(HI- 27)

which involve N unknown values of the nodal drawdowns , sm-
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Obviously, the above integrals vanish for all elements which do not in-

clude the n^h nodal point. Thus, only those elements which are shared by the

n^" nodal point will contribute to the n equation in Eq. Ill-27 . The resulting

set of equations will therefore be sparse, a fact which greatly facilitates the

application of digital computers to the finite element method.

If we define the 3x3 matrices

and

%m^ ~ ^s y N„N^ dV^

ye

aN„ aN,
AAnm iJ J dxi axj

(HI- 28)

(HI- 29)

and substitute them in Eq. III-27, the n equation becomes

Dnm® (sm " Sq^) + AAnm® * Sm - \ Kij * U Nn d A® {ni-30)

From Eq. C-3 in Appendix C we know that

D ^"nm
12

SsA
'-IT

for a planar triangle , and

D,

_ SgA
2^^ "IT

nm
4 irr

12

if n / m

if n = m

if n ;^ m

if n = m

(m-31)

(ni-32)

for a concentric ring with triangular cross-section, where r is the average

value of r for the triangle and A^ is its area.

To determine the form of AA^jj^® for a planar triangle , we write
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AAnm
aN„ 9N.m

1
9Xj

d A

It
J'J^ ar 9r Tz ar dz zi" az ar

9Nn9Nm
l

z az 8z
dr dz

"
JTa2 (^rrbnbm+ Kj.zbnCin+ K2rCnbin+ K2zCnCm)drdz

= ^ (Krrbnbm+ Kj,zbnCjj^+ K2rCnbin+ K^zCnC^^) (HI- 33)

For a concentric ring with triangular cross-section this becomes simply

AAnm 2TTr—

-

4 A (Krrt'nbm+ Kj.zbnCm + Kzr Cnbni+ KzzCnCm) (EI- 34)

The integral over A® in Eq. III-30 is directly proportional to the flow rate

through the boundaries of the element. Since flow from any element, A, into

some adjacent element, B, is equal to but opposite in sign to the flow from B

to A , these integrals cancel at all internal points in the medium which do not

act as sinks (or sources) and vanish at all impermeable or constant potential

boundaries. The forms of the integrals for elements whose boundaries act as

sinks (or sources) will depend on the nature and geometry of these sinks.

We now turn our attention ^ Q

to the case of a well of radius r^

located at the axis of an axisym-

metric medium and operating at

some prescribed rate of discharge
,

Q (t) . The well , together with a

typical axial element, e, is shown

in Fig. III-3. Let us assume that

,v J. u f *u^ «i«w,«,«t ^r,f^ Fig- ni-3 . Well with typical axial element

.

the discharge from the element mto ^ •'^

the well, Q® (t), is evenly distributed along the z axis, such that 9s/3r at r =r^
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is not a function of z in this element. Remembering that N^ is a linear function

of z , that Nn (n) = 1 and N^ (m) = (see Eq. C-2 in Appendix C) , and using the

definition of U in Eq. Ill- 9, we can write

i^ii,, * UN^i dA"" = Kj.^.*

^n
r as

J 9r

'm

Nn2TTr^dz
r=rw

= Krr
a_s

ar
2i^r^{z^-z^) *

Nn(n)+ Nn(m)

r=rw

I * Q^ (t) (HI- 35)

Eqs. III-31 through EI- 35 give us the explicit forms of the element matrices

inside the brackets in Eq. III-30.

Let us define the 1 x N matrix

Qn(t) ^ t ^'W (HI- 36)

where the summation is taken over the elements adjacent to the n-th nodal

point, and the N x N matrices

^nm ~ 2j
^^^

e

(HI- 37)

We can then rewrite Eq. Ill- 30 in the form

Dnm (^m-^OrJ + AA^ * s^ - 1 * Q^ = (m-38)

During a sufficiently small time interval, At, the functions Sj^-^ and Qj.^ can be

assumed to vary linearly with time. We therefore have for At
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1 * Sm = j Sin(T) dT«^ (Sjn(t) + Sm(t-At)] (in-39)

t-At

and

1 * Qn «^ [Qn (t) + Qn (t - At)] = At Q^ (ni-40)

where Q^ is the average value of Qj^ during the interval At. Substituting in

Eq. in- 38 and rearranging, we obtain

2 [Sm(t)+ Sjn(t-At)] [Dnm+ ^AAnmJ =^ ^n + DnniSm(t-At) (ni-41)

Defining the new matrices

A = n + — AA^nm -"nm ^ 2 nm

Bn = ^ Qn + Dnm Sin(t " At) (in-42)

Xm = 2 l^ni(t)+ Sjj^(t-At)]

Eq III-41 can be rewritten in a concise form as

Anm^m = % (01-43)

Eqs, III-43 are a set of N simultaneous linear algebraic equations which can be

solved for the N unknowns, Xj^, provided that the values of Sm(t- At) at all the

nodal points are known. At the beginning of the first time step, At]^, these

values are given by the initial conditions, Sj^(O) = Sq , Thus, Eqs. III-43 may

be used to calculate the values of Xj^ and Sjjj(t]^) at the end of this time step. The

newly obtained nodal drawdowns , Sjj^(ti) , can then be substituted for Sjn(t - At)

in Eq. III-42 and used in calculating these values of Xj^ and Sj^(t2) at the end of

the second time step, At2. This procedure can be continued until the drawdowns

prior to any desired value of time have all been determined.
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As stated earlier, the set of Eqs. III-43 is sparse, and the matrix Aj^jj^

is banded. Thus, if each nodal point, n, in the finite element network is shared

by not more than M - 1 triangles, there will not be more than M non-zero values

of Aj^jj^ for each value of n. The number M is' usually referred to as the "band

width" of the matrix Aj^j^^.

E . CONSTANT DRAWDOWN BOUNDARY CONDITIONS

If drawdown at some nodal point k remains constant at all values of time,

we will have

Sk{t) = s,^(t-At) = Sjj

where Sj^ is constant. Eq. III-41 can therefore be written in the form

- [Sj^(t)+Sni(t-At)] [Dnin+^AAnm] =
f^ [Qn " AAnkSkJ + DnmSm(t " At)

where m ^ k. In general, one can account for constant drawdown boundaries in

Eqs. III-43 by simply redefining
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F WELL OF CONSTANT DISCHARGE IN A NON-UNIFORM FLOW FIELD

Let us assume that a well of radius r which has been completed at the

center of an axisymmetric porous medium is pumped at a constant rate, Q.

When the flow field near the axis is uniform, the discharge is evenly distributed

along the wellbore and the contributions of the axial elements, Q^, to the total

discharge, Q, are directly proportional to the vertical dimensions of these

elements at the center of the medium. When the flow field is not uniform, as

in the case of multiple-layered media, the values of Q® become time dependent

and the distribution of discharge along the wellbore becomes uneven. This

variable inner boundary condition was first incorporated into the finite

element method by Javandel and Witherspoon (29), using the theory of super-

position A detailed review of this approach is given in the following

discussion.

Consider a well that is surrounded by K - 1 axial elements with triangular

cross -sections so that the total number of nodal points along the well is K As

indicated by Eqs, 111-36 and 111-40, at each time step, At, these nodal points can

be associated with some average nodal discharges, Qj^, which can be expressed

in the form

Qn = ^ I
Q^ (111-45)

e

where Q^ = ^ [Q^(t) + Q^(t-At)].

The summation in the above equation is taken over the two axial elements

shared by the n-th nodal point and Q^ represents the average discharge from the

element e during the interval At. The values of Q^ and Q® are constant during

any given time step, but they may change from one time step to another.

During any time step, At, the total discharge, Q, may be expressed as

the sum of the average nodal discharges, Q^^:
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K

Q = ^ Qn (III-46)

n=l

If the discharge is not uniformly distributed along the wellbore, the values of

Q cannot be determined from the dimensions of the axial element. Thus,

Eqs. III-43 will give us N equations in N + K unknowns, which is impossible

to solve.

If we assume that the drawdown in the wellbore is uniform at any given

time, t, the number of unknowns can be reduced from N + K to N + 1. The

number of unknowns can be further reduced from N + 1 to N by guessing at the

value of Qt^ during the first time step, At]^. This makes it possible to solve

the N equations in Eqs. III-43 for the N - K + 1 unknown nodal drawdowns,

^m(*l)' ^^^ ^^® remaining K - 1 nodal discharges at the wellbore, Qj^(At]^).

The actual total discharge during this time step is given by

K

Ql = 2 Qn(^tl)

n=l

For the next time step, At2, the estimate of Qj^ can be improved with the

formula

%(^ti) = ^ QK(Ati_i) (III-47)

where Q is the prescribed discharge at the well. (This procedure can be repeated

after each time step.) Solving Eqs. III-43 for Sj^(t2) and Qfj(At2), the actual

total discharge for the second time step may be calculated from

K

Q2 =^ Qn(At2)

n=l
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The discharge profile for the entire period of pumping is shown in

Fig. III-4. Q

Qi
Q2 Q4

Q3 Qc
Qe Q,-

Ati

to ti t2 tg t4 t5 tg
-^t

4-1

Fig. III-4. Variation of average total rate of discharge with time.

It is well known that drawdown at any point in a porous medium , at any

time. t. is direct^ proportional to the strength of the sink that operates in that

medium. Thus, for each nodal point, m, there exists a function, fj^(At), such

that

Sm(t) -«m(to) = Q fm(t-to) (ni-48)

If Q changes from time step to time step as in Fig. III-4, we can use the principle

of superposition to write

^m^h) -Sm(to) - Qlfm(tl-to)

Sm(t2) - Sm(to) = ^1 fm(t2 " ^q) ^ (Q2 - Qi) ijn^h " U)

Smfti) - Sm(to) = Qifni^ti-to)+ (Q2-Qi)fm(ti-ti)

+ (Q3-Q2) fna(ti-t2)+ ...

... + (Qi-Qi-1) fm<ti-ti-l) (III-49)

Let us denote the solutions of Eqs 111-43 for the first time step, Atj^,

by Sj^(t]^) . As mentioned earlier, these solutions correspond to the discharge

Q. which is not necessarily the same as the prescribed discharge Q. Multiplying
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the values of Sj^(t2) by Q/Q^ while assuming that Sj^(tQ) = for all values of m
(drawdown initially zero) and using Eq. 111-49, we obtain a new set of solutions,

Sj^(t]^), which correspond to the prescribed discharge, Q, during the first time

step:

-^ Sj^(tl) = ^ [Qlfm(tl-to)] - Qfm(tl-to) = Sj„(ti) (III-50)

Using the corrected solutions, Sjn(ti),we can solve Eqs. ni-43 for the

second time step, At2, to obtain the drawdowns SjYi(t2) which correspond to the

discharges Q during At^ and Qi during At2. Using Eq. III-49 we can write

Sm(t2) = Qfm(t2-t0)+ (Q2 " Q) fm(t2 "tl)

If we choose t2 in such a way that At2 = t]^ ~ to ' ^^^^ equation becomes

Q2-Q
Sm(t2) = Sm{t2) + —^ Sjn(ti)

and the corrected drawdowns , Sj^(t2) , corresponding to the discharge Q, will

be given by

Q2 -Q
Sm(t2) = Sm(t2) -—^ Sm(tl) (111-51)

Using these values to calculate the solutions at the end of the third time step,

we obtain

Sm(t3) = Qfm(t3-to)+ (Q3- Q) ^mC^S "^2)

where Sj^{t3) corresponds to the discharges Q during At^ and At2 and Q3 during

At3. We now have two possibilities: either choose t3 such that At3 = tj^ -Iq, in

which case the corrected solutions are given by
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Qg-Q

or choose 13 such that At3 = t2 -tg. in which case the corrected solutions can

be obtained from

Q3-Q
Sm(t3) = Sin(t3) -~ Sj^(t2) (HI- 5 3)

In general, the solutions may be corrected for Q using the recurrence

formula

Sm(ti) = ^m(h) --^ s„,(tj) (HI- 54)

where

tj -tQ = Ati = tj-ti-i ; j < i

Qj = actual discharge during At^

Sm(ti) = drawdown at nodal point m and time t = t^ due to pumping

with constant discharge Q during the interval [tQ.tj)

^mC-i) "^ drawdown at nodal point m and time t = t^ due to pumping

with constant discharges Q during the interval [tQ.tj.]^) and

Q^ during the time step At^

Eq, in- 54 can be used to calculate the drawdown at any nodal point m at any time

t =ti, due to a well that discharges at a constant rate Q during the interval

[tQ,ti) in a non-uniform flow field.

In the next chapter, the finite element method will be used to examine

the behavior of a two-aquifer system and to obtain an independent check on the

analytical solutions developed in Chapter II.
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IV. BEHAVIOR OF MULTIPLE-AQUIFER SYSTEMS

A. INVESTIGATION OF A TWO-AQUIFER SYSTEM

The analytical solutions and finite element technique described in

Chapters II and III, respectively, can be used to investigate flow fields around

pumping wells in multiple-aquifer systems. As a basic approach to such an

analysis, we will study the behavior of a system consisting of only two aquifers,

separated by a single aquitard. We assume that the layers are homogeneous,

isotropic, uniform in thickness and infinite in radial extent. A well of infini-

tesimal radius completely penetrates one of the aquifers and discharges at

a constant rate Q. The system which is saturated with water and is in a static

condition prior to pumping, is illustrated in Fig. II-4.

1. Approach to Problem

Our primary objective here is to develop an understanding of the

transient flow patterns in the vicinity of a pumping well that operates in a

two-aquifer system. For this purpose, we must be able to determine the

values of the dimensionless drawdowns, Sy-., at each point in the system at

all values of pumping time, t. One way of obtaining such data is to evaluate

numerically the analjrtical solutions in Section II-C (Eqs. 11-82, 11-83 and

11-87) for various values of the dimensionless parameters t-^, /3jj and r/Bjj.

Another possibility is to divide the system into a network of finite elements

and use the method described in Chapter III to calculate the dimensionless

drawdowns at the nodal points of the mesh, at various values of pumping time,

t. The advantages and disadvantages of each of these methods will be dis-

cussed below.

Our analytical solutions were developed with the assumption that flow

is essentially horizontal in the aquifers and vertical in the aquitard. These

solutions are therefore theoretically limited to systems in which the unpumped

aquifer is relatively thin, and in which the permeability of the aquitard is
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much smaller than the permeabilities of both aquifers. The finite element

method, on the other hand, is free from such limitations and can be used to

investigate two-aquifer systems with arbitrary thicknesses and permeabili-

ties. This suggests that flow patterns obtained with the finite element method

should be more representative of the actual situation than those obtained from

the analytical solutions.

To demonstrate the importance of the anal5^ical solutions, it should

be remembered that the dimensionless drawdown, s„, at a given point (r,t)

in the two-aquifer system is a function of the following thirteen variables:

t, K^, K^', Kg, (p^, <P^' , '/'2 ' ^1 ' ^l' ' ^2 ' "l' "l'' "2- I" Section II-H

it was shown that under the limitations for which the analytical solutions were

developed, the values of s„ depend on only five dimensionless quantities,

tj-), /?,,, r/Bj,, /Sgi. ^^/B^i- Obviously, values of s obtained with the finite

element method in the absence of these limitations can also be expressed in

terms of dimensionless quantities. However, the form of these quantities

is unknown, and to determine them would require that we investigate the effect

on the solutions of all possible dimensionless combinations of the above thir-

teen variables, which is impractical. Thus, the analytical solutions have an

advantage over the finite element method in that they enable us to express the

dimensionless drawdown at any point within the system in terms of a minimum

number of parameters.

Since neither the analjrtical approach nor the finite element method

is by itself sufficient to analyze the problem, we will use a combination of

those methods to investigate the behavior of a two-aquifer system. Our ap-

proach will be as follows: (a) various two-aquifer systems with different

properties will be studied using the finite element technique, (b) each system

will be subdivided into a network of finite elements, and values of the dimen-

sionless drawdown, Sy-j, at each nodal point will be calculated at different

values of pumping time, t, (c) at a selected number of nodal points, the values

of Sj-j will be plotted on logarithmic paper versus the corresponding values of
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tp, /^ij
and r/Bjj and (d) the resulting curves will then be compared to results

obtained through numerical evaluation of the analytical solutions at similar

values of t^,, B.. and r/B...
D' ^ij ij

As long as the permeability ratios K^^/K ' and Kg/Kj' are sufficient-

ly large, and the thickness H2 of the unpumped aquifer is sufficiently small,

the dimensionless drawdown s_^ for practical values of time at any given

values of t , (i-- and r/B.. should be the same whether determined from the

finite element or the analytical approach. We will then gradually decrease

the ratios of K,/K,' and Kg/K^', without changing the values of t^, /3j- and

r/Bjj, until the two sets of solutions will no longer coincide. In this way,

we will be able to determine the limiting values of K^/KJ and Kg/Kj' below

which the dimensionless drawdowns will cease to be unique functions of t„,

/3;: and r/Bj:. At this point the analytical solutions will have to be discarded,

and the system studied with the aid of the finite element method alone. The

effect of the thickness, Hg, on the applicability of the analytical solutions will

also be investigated in a similar manner.

The distribution of curves of equal drawdown around the pumping well

in different systems and at various values of pumping time will also be plotted

from results obtained with the finite element method. Here the analjrtical

solutions are of little use, since they assume that flow is unidirectional within

each layer.

Finally, the functional relationships between s„, t„, ^Sj: and r/Bj.

will be utilized to develop practical methods of evaluating multiple-aquifer

systems in the field with the aid of pumping tests.

2. Design of Finite Element Network

A typical finite element network used to investigate two-aquifer systems

is illustrated in Fig. IV- 1. The network represents a radial cross-section

through the three-dimensional axisymmetric medium, so that each triangle

and rectangle in the figure is a pax't of a concentric ring of constant cross-
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Fig. IV- 1. Network of finite elements used to investigate

a two-aquifer system.
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section. The computer program automatically divides each rectangle into

triangles. The network consists of 542 nodal points and of 501 elements . The

pumping well coincides with the axis and removes fluid only from the bottom

three axial elements. The external radius of the network is 30,000 feet, and

the elements increase in size along the radial dimension from the axis out-

ward. The thicknesses and properties of the individual layers in the system

vary from problem to problem.

For any problem the solutions at the end of each time step are obtained

both in the form of drawdowns, s (feet of water), and in the form of dimension-

less drawdowns, Sq. By definition, the values of /3jj and r/Bj; at any point are

directly proportional to the radial distance, r, from the pumping well. This

means that the ratios between the values of /3^; and r/B^; are the same at all

nodal points in any given problem. In addition, each nodal value of Sq at the

end of any given time step can be associated with some known values of tj),

/3j; and r/Bij. Therefore, at each nodal point, one obtains a unique functional

relationship between the dimensionless drawdown, sj), and the dimensionless

parameters, tj), /3jj and r/B^j. By carefully choosing the properties of the

individual layers in the system, one can always fix the values of
/^ij

and r/B^j

at the various nodal points as desired. This greatly facilitates comparison of

the results with those obtained from the analytical solutions, and enables one

to design the network so as to develop curves of sjy versus t£) for arbitrary

values of I3^i and r/Bjj.

3. Curves of Dimensionless Drawdown Versus Dimensionless Time

A convenient way of presenting the numerical results is to plot on

logarithmic paper the dimensionless drawdown, Sq, at any point in the system

versus the dimensionless time, tjj, in the aquifer being pumped, for various

values of the parameters /3n and r/B^j . In the case of a two-aquifer system,

each curve of sjj versus tj) is a function of the four dimensionless parameters

i3ll. /321. r/Bn and r/B2i, so that there exists an infinite number of such curves.

Therefore , in presenting the results for this case, one must, for practical
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reasons, limit himself to a small sample of this infinite population of possible

curves. The combinations of /3- • and r/B^i that have been considered in this

work are listed in Table FV-l

Table I\'-l List of Figures Showing Values of /3^: and r/B-- Investigated

Figure ^11 r/B 11 ^21 r/B2i

IV - 2



-/6|, -r/B|| -001

to =
CCA

Fig. IV-2. Dimensionless drawdown versus dimensionless time
in a two-aquifer system. (/Jn = r/Bn = 0.01;

/321 - r/B2i = 0.01 and ;32i = r/B2i = 0)

Fig. IV-3. Dimensionless drawdown versus dimensionless time

in a two-aquifer system. (/3ii = r/Bn = 0. 1;

/321 = r/B2i = 0. 1 and /321 = r/B2i = 0)
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Fig. IV-4. Dimensionless drawdown versus dimensionless time

in a two-aquifer system. (/3ii = r/B^ = 1.0;

1321 = r/B2i = 1.0 and /321 = r/B2i = «)
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10'

10-^

IQ-'

Fig. rV-5. Dimensionless drawdown versus dimensionless time
in a two-aquifer system. (Pn = 0.01, r/Bj^j^ = 0.02;

/321 = 0.01, r/B2i = 0.02 and (S.^i
= r/B2i = 0)
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Fig. rV-6. Dimensionless drawdown versus dimensionless time

in a two-aquifer system. {(Sn = 0.05, r/B^j^ = 0.1;

/321 = 0.05, r/B2i = 0-1 and /32i
= r/Bgi = 0)

P
^

10'

10°

«> lO"'

d

10-'

10-^

A, = o.i

r/B,|'02

10"'

Fig. rV-7. Dimensionless drawdown versus dimensionless time

in a two- aquifer system. {jSn - 0.1, r/Bn = 0.2;

P21 = 0.1, r/B2i =0.2 and/321 = ^/B21 " «)
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Fig. rV-8. Dimensionless drawdown versus dimensionless time

in a two-aquifer system. (Jin = 0.01, r/Bn = 0. 1;

/321 = 0.01, r/B2i " 0-1 and /32i = r/B2i =0)
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r/B,| = I.O

10
.-2

Fig. IV-9. Dimensionless drawdown versus dimensionless time

in a two- aquifer system. {fS-,-^ - 0.1, r/Bj^j^ = 1.0;

/321 = 0.1, r/B2i = 1.0 andi32i = r/B2i = 0)
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Fig. IV-10. Effect of unpumped aquifer on dlmensionless

drawdown in aquitard at z/U^ = 0. 8 in a two-

aquifer system with fSn = i^/^n = 0.1.
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The flatter portions of these curves were plotted from results obtained with

the finite element method at relatively large permeability ratios, Ki/Kn'

and K„/K,', and at relatively small values of Hg- In order to compare with

the analytical solutions, Eqs. 11-82, 11-83 and 11-87 were evaluated numeri-

cally for selected values of tj-j, /S-- and r/B^;, and these results are indicated

by an x on the figures. It is seen that the results obtained by both methods

are practically identical along the flatter portions of the curves.

The steep portions of the curves are based almost entirely on results

obtained through numerical evaluation of the analytical solutions. Exceptions

are the curves for the unpumped aquifer because at small values of dimension-

less time, Eq. 11-83 could not be evaluated numerically. The finite element

method, when used with the network shown in Fig. IV- 1, failed to yield satis-

factory results along the steep portions of the curves; the results started to

deviate from the analytical solutions as the curves became steeper, and they

became negative at low values of tj^.

However, in Section IV-A-4c, it will be shown that whenever the re-

sults obtained with the two methods deviate from each other due to reasons

such as an insufficient permeability contrast between the aquifers and the

aquitard, this deviation increases as the value of t_ increases. It will be

shown that at small values of pumping time the system is closer to conditions

of unidirectional flow in the individual layers than at larger values of time.

This suggests that, since in Figs. IV-2 through IV-9 the results are identical

along the flatter portions of the curves, they should certainly be identical

along the steep portions. Where this was not the case, the reason probably

was due to the computer program used in evaluating the anal5^ical solution

for the unpumped aquifer, or the coarse mesh used in the finite element ap-

proach.

Indeed, when the network in Fig., IV- 1 was refined, the finite element

results were considerably improved. For example, Fig., rV-3 shows results

obtained with the normal network used in this study and another special network
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containing a much larger number of elements This special network consis-

ted of 34 nodal points along the vertical axis, with a total of 857 nodal points

and 839 elements It will be noted on Fig. IV-3 that results from the refined

network give much better agreement with the analytical solutions as dimen-

sionless time decreases.

This can be explained from the development of the finite element

method in Chapter III We know that this method will not yield correct results

unless the hydraulic gradient is constant across each element in the network.

When the vertical gradient across the aquitard is very large, which is the

case when the curves are steep, the only way to obtain near constant gradients

in all elements is to divide the aquitard vertically into a large number of

small elements. The smaller these elements are, the more accurate are

the finite element results. Since there is a practical limit to the number of

elements tnat one can use we were forced to construct the steep portions of

our curves solely on the basis of the analytical solutions. This can be theo-

retically justified as long as the analytical solutions match the finite element

results at the flatter portions of the curves, which is the case in Figs, IV-2

through IV -9,

Fig. IV- 10 has been constructed entirely on the basis of results ob-

tained with the finite element method, for the purpose of studying the effects

of variations in /3p, and r/Bgn on the solutions. It will be discussed in detail

in Section IV-A-4b.

4. Behavior of a Two-Aquifer System

a. Small Values of Time

In Section IJ-E, asymptotic solutions have been developed which

give the drawdowns in the aquitard and in the aquifer being pumped at small

values of time. In a two-aquifer system, the criterion for small values of

time was defined as
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tDi ^ 0.1 (IV-l)

since tj)^ =
9-|^-j^ t^ and 9^^^^

= (r/B22)'*/l6
^-i^-j^

, this criterion can also be written

in terms of the dimensionless time t^-, in the aquifer being pumped as

^D ^
(r/Bii)^

(IV-2)

Thus, for each pair of the dimensionless parameters /3^, and r/B,, there

exists some limiting value of tj-, below which the asymptotic solutions can be

considered to be good approximations for the actual drawdown in the system,

provided that we are not in the immediate vicinity of the unpumped aquifer.

These limiting values of t^. are shown by dashed vertical lines on Figs. IV-2

through IV- 10.

For small values of pumping time when Eq., rV-2 will be satisfied,

dimensionless drawdown in the aquifer being pumped is given by

oo

erfc

1/4

1

/3ll-^l/4tD

/y (y -T74t^
_

dy

D

(IV- 3)

and dimensionless drawdown in the aquitard is given by

j-y
erfc

1/4

1

D

- erfc

jaii/lTitp ^y(z/HiV/4tDi

Pll^T/Tt^i- y(2-z/Hi')/>r4Tr)T

/y(y-l74tD)
dy (IV-4)
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Dimensionless drawdown in the unpumped aquifer is assumed to be negligibly

small and an asymptotic solution for this part of the system is not available.

Eq. IV-3 shows that the dimensionless drawdown in the aquifer being

pumped is a function of only two variables, tj-j and (Jn. According to Eq. IV-4,

dimensionless drawdown at any given elevation z/Hi' in the aquitard is a

function of the three variables tjj, /J^^. ^^^ ^/^ll (which is implicit in tj)).

Thus, since the values of (S-^i and r/B2i do not appear in Eqs . IV-3 or IV-4,

the solutions at small values of pumping time are independent of the properties

of the unpumped aquifer. This means that when tj) satisfies Eq. IV-2, the

aquitard and the aquifer being pumped may be considered as an independent

two-layer system. This conclusion will prove to be of invaluable assistance

in developing practical methods for evaluating real two-aquifer systems from

field pumping tests.

The functional relationships between Sq and tj) for different values of

/3-i
, and I'/B^j^ at small values of pumping time are shown at the left of the

dashed vertical lines on Figs. IV-2 through IV-10, It is seen that the effects

of (3.21 ^'^'' ^'^^21 "^^ ^'^^ manifest themselves to the left of these vertical lines,

but that they become quite evident at larger values of t^. In addition, as one

gets closer to the unpumped aquifer (i.e. z/H^' =0.8), the effect of this

aquifer becomes evident at smaller values of time.

Since the values of Sq in the aquifer being pumped depend solely on

tj) and f^ii, we expect these curves to be identical in Figs. IV-2, IV-5 and

IV-8 where (3^ =0.01, and in Figs. IV-3, IV-7 and IV-9 where Pn =0.1.

Indeed when these graphs are superposed one finds that the curves for the

pumped aquifer coincide to the left of the particular dashed line whose value

of tj) is smallest. On the other hand, the curves for the aquitard are different

in each figure because they are functions of both /S^^ and r/B]^^ I" *^he unpumped

aquifer, dimensionless drawdown depends on all four parameters, i3jj and

r/Bij, at all values of tj).
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As mentioned earlier, the vertical spread between the curves in

Figs. rV-2 through rv-9 is indicative of the vertical hydraulic gradient in

the aquitard at some given radial distance r from the pumping well. The

horizontal spread is a direct measure of the time lag in the drawdown

between points situated at different elevations at a given radial distance

from the pumping well. We will show that there exists a relationship

between the spread of these curves and the relative magnitudes of the

parameters /Jj^j^ and r/B-|^-|^.

In Figs. rV-3, IV-6, and IV-8, the values of v/B-^-^ are fixed at

0.1 and we see that the spread between the curves of each graph is not the

same. As
/3]^]^

decreases from 0. 1 on Fig. IV-3 to 0. 01 on Fig. IV-8,

the spread between the curves also decreases. Conversely, when j^n is

fixed at 0. 01 and r/Bj^]^ decreases from 0. 1 to 0. 01, the spread in these

curves increases (see Figs. IV-2, IV-5, and IV-B ). In addition, reference

to Figs. IV-2, rV-3, and IV-4 will show that when (3^-^ and iVB-|^-|^ both in-

crease from 0.01 to 1.0, while the ratio jSj^j^/Cr/Bj^^) remains unity, the

spread in the curves decreases.

We can therefore say that, in general, the spread between these

curves increases as the ratio

JlL
r/B 11

1 /(^I'ci'Hi'

(^1^1 H^
(IV-5)

increases, but decreases as the magnitudes of p-^-^ and r/B-,-, increase for

a given ratio.
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In order to explain this relationship, we must consider the effect on

the physical conditions in the system of each of the following quantities H ',

H , 'Pi'
c-^, V'lCj^, ^I'^^l ^"^ ^' Ooviously, increasing the values of Hj' and

<Pl
c^ or decreasing the values of H, and tp-^ c^ is the same as increasing the

ratio l3n/{r/B^^), When the thickness Hj' of the aquitard increases, the time

that is required for a disturbance in the aquifer to reach a point at some given

value of z/Hj' also increases. This results in longer time lags, higher ver-

tical gradients, and consequently in larger spreads between the curves. If

the thickness H^ of the pumped aquifer decreases while the rate of discharge

remains unchanged, drawdowns in the aquifer are greater and gradients in

the aquitard become larger. By increasing the value of cp ' c ' we actually

increase the storage capacity of the aquitard and decrease the drawdowns in

this layer. Similarly, low values of (/p-, Cj^ correspond to low storage capacity

in the aquifer and therefore to higher drawdowns. In both cases the effect

is longer time lags and higher gradients in the aquitard, which explains the

effect of the ratio
^-i

• /(r/B^^) on the spread of the curves.

Increasing the values of /S]^! and r/B-,-, for a given ratio of Pn/ir/Bn)

is the same as increasing the values of r or K^'/K-j^. Since drawdown in the

aquifer is smaller at larger values of r, vertical gradients tend to become

smaller as one moves away from the pumping well. When K^'/K]^ increases,

the permeability of the aquitard approaches that of the aquifer, which again

reduces vertical gradients in the aquitard. This explains why the spread for

a given ratio of /3-|^j^/(r/B ) decreases when the values of (S-.-. and r/B-,, be-

come larger.

b. Large Values of Time

When the dimensionless time ty. in the aquifer being pumped is greater

than 1. Q(3ii /(t/B^,) , Eq, IV-2 is not satisfied and the asymptotic formulas

IV-3 and IV-4 do not apply Instead, dimensionless drawdown everywhere in

the system is now a function of the five variables tj-,, Pn, v/Bn, /32]l
and r/B2j
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and is given by Eqs. 11-82, 11-83 and 11-87. Thus, each curve of Sy. versus

tj^ in Figs. IV-2 through IV- 10 that was uniquely defined by the parameters

/3i 1 and r/B, , to the left of the dashed vertical lines, has an infinite number

of branches to the right of those lines, each branch corresponding to different

values of /321 and r/Bgj.

In Figs. IV-2 through IV-9, we have shown two branches for each

curve. The upper branch corresponds to the special case when ^n =
/32i

and r/B = r/B , which means that transmissibilities and hydraulic dif-

fusivities are identical in both aquifers. This branch will therefore be re-

ferred to as the "equal-aquifer" branch. The lower branch represents the

limiting case when
/32i

- ^^^oi ~ ^' which means that the trans missibility,

T.-,, in the unpumped aquifer is infinitely large, so that the hydraulic head

in this layer remains constant during the entire period of pumping. This

corresponds to the case treated by Hantush in his modified theory of leaky

aquifers (21) which will be discussed in more detail in Section IV-A-4e. For

the time being, we will only mention that when the hydraulic head in the un-

pumped aquifer is constant, the entire system must eventually approach a steady

state, and the curves of s^. versus X.^. must become horizontal. At this stage,

vertical hydraulic gradients within the aquitard become linear, and we ob-

tain the relationship

^d'

s^
~- '-^ <^-^>

where s^' is dimensionless drawdown at z/Hj' in the aquitard and Sq is dimen-

sionless drawdown in the aquifer being pumped. Both s^' and Sj^ are measured

at the same radial distance from the pumping well. One can easily verify

Eq. rV-6 from the lower branches of the curves on Figs. IV-2 through IV-9.

When the trans missibility, Tg, of the unpumped aquifer increases,

the values of ^321 and r/Bg, decrease, drawdown in this aquifer becomes less,
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and therefore drawdowns in the entire system are diminished. On the other

hand, by increasing the value of (^2 ^2 ' ^® ^^^ actually increasing the storage

capacity of the unpumped aquifer, decreasing the value of /Sgi, and at the same

time decreasing the drawdown everywhere in the system. Therefore, the

higher the values of T and (p^^^' °^ conversely, the lower the values of ^2\

and r/Bgn, the flatter are the curves of s_ versus t_ at large values of pumping

time.

To verify these conclusions, consider Fig. IV- 10 which shows a family

of curves for the particular elevation in the aquitard of z/Hj' = 0. 8 and the

situation where /S-,-, = r/'B - 0. 1. The heavy lines in this figure correspond

to the two limiting cases when /32i = ^/^oi ^ °° (i- ^- ^2 ~ ^^ ^^^ ^2\~ ^^^21 ~

(i. e. Tg ~ °°), and the equal aquifer case where
j32i

= f^n and r/Bgj = ^/^n
(i. e. Tj = T2, a, = Q^). The branches for all intermediate values of fi2i

and r/B„, lie between these limits, either below the equal aquifer branch

when < i32i < f^i\ and < r/Bgj < r/B,-., or above this branch when P^l ^

^21 < °° and r/B < i"/B2i < °°-

From figures rV-2 through IV-9 we see that the spread between the

branches of different curves in any given figure is smallest in the aquifer

being pumped and that it increases with z/H -^ . This could have been antici-

pated, since the effect of the unpumped aquifer is obviously more pronounced

in the vicinity of this aquifer than it is at more distant points.

c. Effect of Permeability Contrasts

The analytical solutions in Chapter II were derived on the assumption

that flow is essentially vertical in the aquitard and horizontal in the aquifers.

We now want to determine what are the permeability contrasts that must be

maintained in an actual two-aquifer system in order for the analytical solutions

to apply. This problem can easily be investigated with the finite element method

of analysis.

As mentioned earlier, the curves of Sj-. versus t^ in Figs. IV-2 through
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IV-9 were in part composed of data obtained with the finite element method.

Since the purpose of those curves was to demonstrate the behavior of a iwo-

aquifer system when the contrast in permeability between the aquifers and

aquitard is sufficiently large, we have not included in these figures any finite

element results that did not fit the analytical solutions. Thus, in developing

these curves, we always increased the values of Kj^/K;]^' and K2/K1' until the

results were identical to those obtained through numerical evaluation of the

analytical solutions and disregarded data that did not match these solutions.

We can therefore investigate the effect of the permeability ratios on the

analytical solutions by comparing the cuves in Figs. IV-2 through rV-9 with

results obtained by the finite element method for similar values of /3j; and

r/Bj^j, but for lower values of K][/K]^' and K2/K]^' . Whenever these results

deviate from the above curves, we will know that we have reached the limit-

ing values of Kj/Kj^' and K2/K1' . The amount of deviation will give an indication

of the error introduced by using the analytical solutions with such permeability

ratios.

To apply this approach, we have considered a system composed of two

aquifers with identical transmissibilities and hydraulic diffusivities, in which

and

Kl = K2



When K /K ' = K /K ' = 5000, our dimensionless parameters become

/3ii
= r/B.. = lO-^r. At r = 100 feet (/3.. = r/B.; = 0. 1) and at r = 1000 feet

(/3^j
= r/B.. = 1. 0), the finite element results were identical with the analy-

tical solutions and were therefore used in constructing the curves of Figs,

IV-3 and IV -4. At r - 10 feet (P^ - r/B^j = 0, 01) the finite element results

for the aquitard were no more than 5% below the curves in Fig. IV-2. The

results for both aquifers were in excellent agreement with the curves of

Fig. IV-2.

When Kj/K^' = Kg/Kj' = 500, we have /3.j = r/Bjj = 3. 16 x lO'^r.

At r = 31, 6 feet {(3^ = r/Bjj = 0. 1) and at r = 316 feet (^3^: = r/B^j = 1. 0) the

finite element results were identical with the curves in Figs. IV-3 and rV-4.

At r - 3. 16 feet ()3. = r/B.. = 0, 01) the match was still very good in the aqui-

fers, but in the aquitard the results were slightly below the curves of Fig,

IV-2 on the right side of the dashed vertical line. The error was less than

5%.

When K./K' = K /K ' - 50, then (i.. = r/B-- = 10-2r. At r = 100
J. J. ^ J. IJ 'J

feet (i3j;= ^/^i]
- 1- 0) the match was perfect at low values of tj-,, but devia-

tions of up to 5% from the curves in Fig. IV -4 occurred at t > 10^, At

r = 10 feet (/3. .
= r/B^: = 0. 1) agreement was excellent in the aquifer being

pumped, but deviations of up to 5% occurred in the unpumped aquifer. In

the aquitard, deviations from the curves in Fig. IV-3 were less than 5% along

the steep portions and less than 10% along the flatter portions. At r = 1 foot

(/3ij =r/Bn =0.01) the match was still very good in the aquifer being pumped. In

the unpumped aquifer, the deviations were less than 5%, but in the aquitard the

finite element results were as much as 10% below the curves of Fig. IV-2.

Finally, when K^/K^' = Kg/Kj' - 20, we obtain /3. • = r/B^j = 1. 581 x

10~2r. At r = 63. 25 feet (/3n = r/Bj. = 1, 0) the finite element results for the

aquifers were less than 5% below the curves of Fig. IV -4. In the aquitard,

the deviations were less than 5% at t^. < 10^ and less than 10% at t„ > 10"^,

and the error was larger at lower values of z/H]^' than at higher values.
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At r = 6.325 feet ((3^ = ^/^i] =0.1) deviations from the curves in Fig. IV-3

were less than 10% in the aquifers and less than 20% in the aquitard.

In all cases, the finite element results were either at or below the

curves in Figs. IV-2 through IV-4, and the deviations increased as the values

of tj) increased. Errors were always largest in the aquitard and smallest

in the aquifer being pumped.

To illustrate the effect of permeability contrasts between the aquifers

and the aquitard on the flow patterns in these layers , the finite element

results were used to obtain the distribution of dimensionless drawdown in the

system at various values of K^/K]^' = K2/K2^' as shown in Figs. IV-11 through

IV-14. These figures show that flow in the aquifer being pumped is always

nearly horizontal, while in the aquitard and in the unpumped aquifer the flow

fields tend to be less uniform. Except in the vicinity of the pumping well, the

flow field in the unpumped aquifer is usually more uniform than it is in the

aquitard. In general, flow becomes less horizontal in the aquifers and less

vertical in the aquitard as pumping time increases and as the radial distance

from the pumping well decreases. One also notes that flow in the aquitard

is closer to the vertical when the permeability of the unpumped aquifer in-

creases (compare Figs. IV-11 and IV-14). This explains why the error in

the analytical solutions increases with time and decreases with radial

distance from the pumping well, and why it is largest in the aquitard and

smallest in the aquifer being pumped.

As a next step, we must examine the effect of changing the thickness

of the various layers in our system on the flow fields in this system. Figs.

rV-11 through IV- 13 incicate that when the permeability contrasts between

the aquifers and the aquitard are not less than one order of magnitude, the

effect of leakage from the aquitard is concentrated along a thin portion of the

aquifer being pumped in the vicinity of the interface. By decreasing the thick-
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ness of this aquifer we would reduce the vertical components and increase

the horizontal components of flow in this layer, thereby bringing the system

closer to conditions of vertical flow in the aquitard and horizontal flow in the

aquifers. Thus, the effect of reducing the thickness of the aquifer being

pumped is to reduce the error in applying the anal5^ical solutions to this

problem. On the other hand, since vertical flow is confined to a thin portion

of this aquifer, we can say that flow in the lower part of the aquifer is essen-

tially horizontal. Thus, adding to the thickness of the aquifer being pumped

would have little effect on the shapes of the flow fields in Figs IV- 11 through

IV- 13 since we would be merely adding horizontal flow lines to a horizontal

flow field.

At small values of pumping time, the shape of the flow field in the

aquitard is determined solely by the permeability ratio Kj/K-j^', since the

properties of the unpumped aquifer have little effect on the drawdown in the

other layers. Thus, the error in using analytical solutions at the steep por-

tions of the curves of sp versus tjj should not be significantly influenced by

the thicknesses of the aquitard and the unpumped aquifer. At larger values

of time, the shape of the flow field in the aquitard will depend on the condi-

tions at the interfaces, which are determined by the thicknesses and permea-

bilities of the two aquifers Thus, the thickness of the aquitard should have

less influence on the error introduced by the analytical solutions at large values

of time than the permeability ratios at the interfaces.

The effect of the unpumped aquifer on the flow fields in the other two

layers is negligible at small values of pumping time, as was shown abovt;.

In the next section, it will be shown that the influence ot its thickness on these

flow fields at largo values of time is less significant than the permeability

contrast between this aquifer and the aquitard, Wc can thrjrefore conclude

that, in general, the error introduced by the analytical solutions depends to

a much larger degree on the permeability ratios than on the thicknesr^es of

the individual layers.

-307-



Let us define "practical values of pumping time" as those values of

ty, at which the relatively flatter portions of the curves of Sq versus tj^ at

any point in the system do not exceed a length of five logarithmic cycles.

According to this definition, the curves in Figs. IV-2 through IV- 10 never

exceed the range of practical values of pumping time. It now seems that

for real two-aquifer systems the results of our investigation may be gener-

alized in the following manner-

1. When the permeabilities of the aquifers are at least three orders of

magnitude larger than the permeability of the aquitard, the analytical

solutions apply everywhere in the system at all practical values of

pumping time. At points in the aquitard situated within a radius of

about 30 feet from the pumping well the analytical solutions may

eventually give errors of not more than 5%. When the permeability

contrasts are larger than three orders of magnitude, even these er-

rors become negligible.

2. When the permeabilities of the aquifers are two orders of magnitude

larger than the permeability of the aquitard, the analytical solutions

apply everywhere within the aquifer being pumped, at all practical

values of pumping time. For points in the aquitard that are radially

several tens of feet away from the pumping well, the anal5d;ical solu-

tions may give errors of up to 5%., For points in the aquitard that

are at least several feet away from the pumping well the errors are

not more than 10%, but they can increase sharply at points closer to

the well. In the unpumped aquifer, the errors are less than 5% every-

where except in the immediate vicinity (a few feet) of the pumping

well.

3 When the permeabilities of the aquifers are one order of magnitude

larger than the permeability of the aquitard, the errors involved in

applying the analytical solutions to points that are at a radial distance

of more than about 100 feet from the pumping well are less than 10%
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in the aquitard and less than 5% in the aquifers, at all practical values

of pumping time. These errors may double several tens of feet away

from the pumping well, and they may be even larger for points in the

aquitard that are within a radius of several feet from the pumping

well.

4. When the permeabilities of the aquifers are less than one order of

magnitude larger than the permeability of the aquitard, the errors in

applying the analytical solutions may oe very large and we can no more

regard the system as composed of distinct aquifers and aquitards;

these definitions would now lose all meaning.

5. At small values of pumping time, which in most cases are associated

with the steep portions of the curves of s versus tj-j, the error intro-

duced by applying the analytical solutions to the aquitard and to the

aquifer being pumped is practically independent of the permeability

K2 of the unpumped aquifer,

6. The error introduced by applying the analytical solutions to a two-

aquifer system increases with pumping time and decreases with radial

distance from the pumping well. It is largest in the aquitard and smal-

lest in the aquifer being pumped.

d. Effect of Thickness of Unpumped Aquifer

The analytical solutions in Chapter II were derived on the assump-

tion that the unpumped aquifer is thin enough so that drawdown across its

thickness is uniform at any time t. Since the axis of the system must act

as a vertical flow line, all flow lines in the vicinity of this axis must be in-

clined away from the horizontal. The distorting effect of the axis on the

essentially horizontal flow field in the unpumped aquifer can be clearly seen

in Figs. rV-11 through rv-13. These figures also show that in the aquitard,

horizontal components of flow are larger near the aquifer being pumped than

near the unpumped aquifer. This suggests that since the permeabilities of
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both aquifers are the same, flow in the unpumped aquifer should be closer

to horizontal than is flow in the aquifer oeing pumped. Since in the aquifer

being pumped flow is essentially horizontal, we conclude that it is chiefly

the effect of the axis that causes deviations from horizontal flow in the un-

pumped aquifer. Therefore, the larger the thickness of this aquifer, the

wider is the distorted portion of its flow field. Thus, increasing the thick-

ness of the unpumped aquifer results in larger errors when applying the

analytical solutions to the system.

However, increasing the thickness of the unpumped aquifer also has

an opposite effect: as the transmissibility increases, the drawdowns and

hydraulic gradients in this aquifer become smaller. In the extreme case

when the transmissibility is infinity, the drawdown in the unpumped aquifer

is zero at all values of pumping time and the interface between this layer

and the aquitard becomes an equipotential surface. This is illustrated in

Fig. IV-14,, Therefore, the larger the thickness of the unpumped aquifer,

the smaller are the horizontal components of flow in the aquitard and the more

uniform are the drawdowns within the aquifer. Consequently, the error in

applying the analytical solutions to the system is smaller.

The two opposite effects of changing the thickness H„ tend to cancel

each other to some extent, and we can therefore say that the error involved

in the anal3^ical solutions depends to a much lesser degree on the thickness

of the unpumped aquifer than on the permeability ratios between the layers.

The magnitudes of these errors were discussed in the previous section.

e. Comparison with Hantush's Modified "Leaky Aquifer" Problem

In his "Modification of the Theory of Leaky Aquifers, " Hantush (21)

developed asymptotic solutions for the drawdown in an aquifer that is overlain

and underlain by two aquitards. He assumed that the aquifer is completely

penetrated by a well of infinitesimal radius, and that the drawdown along the upper

and lower boundaries of this system remains zero when the well is being
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pumped at a constant rate. In Section II-G, we have shown that the problem

considered by Hantush is a special case of our three-aquifer problem, and

that our three-aquifer system reduces to his "leaky aquifer" system when the

transmissibilitles of the unpumped aquifers approach infinity. A general

solution to this problem was developed in Section II-F.

In the absence of a lower aquitard, Hantush's system becomes mathe-

matically equivalent to a two-aquifer system in which the transmissibility

of the unpumped aquifer is infinity and iSg-. = r/B.,, = 0. His solution for small

values of pumping time is therefore equivalent to Eq. I\'-3, As mentioned

previously, this solution is valid at all values of dimensionless time tj-.

which satisfy the condition

For large values of pumping time, Hantush (21; developed the equation

OO

exp - y

6, u
4y

d2

y
(IV -7)

n'Ci'Hi'
in which u - lAtj^ and 5-|^

= 1 + -r —
, According to Hantush, Eq IV-7

is valid at all values of time that satisfy the condition t > 5 Hj'^/oj^' . Since

tai' _ _ (r/Bii^

H^.2 = ^Di - -11 ^D -
i6^ii2

^D

we can rewrite this condition in terms ot ij-,-^ and ^^B-^j^ as

The parameter- 5-^ can also be expressed in terms of
/j^i

^"<^i '"^^11 ^^
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16 /?ll^

Eqs. IV-3, IV-5, IV-7, IV-8 and IV-9 indicate that Hantush's solutions,

together with the ranges of tQ within which they are valid, are unique functions

of the dimensionless parameters /S^i and r/B]^i. In addition, Eqs. IV-5 and

IV-8 show that for given values of Pn and r/Bj^j, these solutions cover the

entire range of dimensionless time, t^, except for an interval whose length

is less than two logarithmic cycles. Within this interval, Hantush's asymptotic

solutions fail, and the dimensionless drawdown Sq must be obtained either by

graphical interpolation or through numerical evaluation of the analytical solutions

developed in this work.

Hantush has apparently overlooked the unique relationship that exists

between the parameters (S-^-^ and r/B^]^ and the ranges of tp within which his

solutions are valid. Consequently, he was unable to develop dimensionless type

curves of sq versus tjj (or u) that would apply to all values of pumping time

.

Instead, he has presented his solutions separately for small values of time (in

terms of /^jl
o^ily) and large values of time (in terms of I'/Bj^^ only). Since his

solution for large values of time depends on pn and r/B^^j, and since the range

of tj) (or u) within which his solutions are valid is a function of both fSn and

r/Bj^-]^, Hantush's well known (i curves and r/B curves have limited application

in analyzing leaky aquifer systems . We will now show how these two sets of

curves can be integrated into one unified family of curves

.

Figs. IV-15 through IV-20 show curves of dimensionless drawdown

in the aquifer being pumped versus dimensionless time tj) for different values

of /3]^j^ and r/Bj^^.- Each curve corresponds to a given value of (in and r/Bj^j

for the case when ^321 = i"/B2i = 0, and is divided by parentheses into three

sections . The section enclosed within the parentheses corresponds to the

interval within which, according to Eqs. IV-5 and IV-8, Hantush's solutions

are not valid. The values of Sq in this section were obtained through numerical
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Fig. IV-16. Dimensionless drawdown versus dimensionless time

in pumped aquifer of a two-aquifer system with zero

drawdown in unpumped aquifer. (Pn = 0.05)
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Fig. rV-17. Dimensionless drawdown versus dimensionless time
in pumped aquifer of a two-aquifer system with zero

drawdown in unpumped aquifer. (Pn = 0.1)
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Fig. IV-18. Dimensionless drawdown versus dimensionless time
in pumped aquifer of a two-aquifer system with zero

drawdown in unpumped aquifer. (J3ii =0.2)
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Fig. IV-19. Dimensionless drawdown versus dimensionless time

in pumped aquifer of a two-aquifer system with zero

drawdown in unpumped aquifer. (JSn = 0.5)
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Fig. IV-20. Dimensionless drawdown versus dimensionless time

in pumped aquifer of a two-aquifer system with zero

drawdown in unpumped aquifer, (fin = 1.0)
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evaluation of the analytical solutions developed in Chapter II (Eqs. 11-82

and n-161). The other two sections correspond to small and large values

of pumping time and were obtained through numerical evaluation of Eqs.

IV-3 and IV-7 respectively. Although all portions of these curves could

be obtained from Eqs. 11-82 and 11-161, we preferred to use Eqs. IV-3

and IV-7 when applicable, because they require relatively little computer

time. It is seen on these figures that the restrictions on the validity of

Hantush's solutions, as defined in IV-5 and rv-8, are on the conservative

side and are therefore sufficient for all practical purposes.

At small values of time, the curves in Figs. rV-15 through IV-20 are

identical with the curves in Figs. IV-2 through IV-9 for corresponding

values of j3-,, . At large values of time, these curves become invalid when-

ever the transmissibility of the unpumped aquifer is not many times larger

than that of the aquifer being pumped. Since in reality the transmissibility

of the aquifer being pumped is usually larger, we conclude that Hantush's

solutions have limited application in predicting the behavior of real two

aquifer systems at large values of pumping time.
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transmissibility of Aquifer 2 becomes infinity, the influence of the overlying

layers disappears completely and the lowermost three beds behave like an

independent two-aquifer system. In such cases the system eventually reaches

a steady state, as shown in Figs. IV-2 through rV-10.

Next, let us assume that Aquifer 3 is being pumped at a constant rate.

At small values of time, the effect of Aquifers 2 and 4 on the drawdowns in

the pumped aquifer and in Aquitards 2 and 3 is negligible. We can therefore

adopt Eqs. 11-147, 11-153 and 11-154 to this problem simply by changing the

parameters in these equations to (/332+ P33) , r/B32, and r/B33. Drawdown in

Aquifer 3 is then given by

Q̂3 r e-y
Sq(r,t) = -—-— \ erfc

(/^32+ /333)^
^y (y - U3)

dy (IV-10)

drawdown in Aquitard 2 is given by

Q3 p

3 J y
U3

erfc
(/^32+/333)^+ y(l-z/H2')/V4tD2

erfc

^ y (y - ug)

(/332+ /333) VTT^ + y (1+ z /H2')/V4tD2'

^^y (y-u3)
dy (IV-ll)

and drawdown in Aquitard 3 is given by

So'(r,z,t) =
Q.

4ttT
3 ^ y

"3

erfc
(
(/332+ i333)^+ y(^'/H3')/V4TD3

^y (y-u3)

erfc
(/332 + /333) Vug + y (2 - z '/H^)/^/4tB^

^ y (y - U3)
dy (IV-12)

where z' = z - (H2' + H3) and z is being measured from the top of Aquifer 2

upwards Since the forms of these equations are comparable to those of Eqs.

IV-3 and IV -4, the curves of s^ versus tj-j for Aquifer 3 and Aquitards 2 or

3, for given values of(/332 + ^333) and r/B„2 or r/Bgg, are similar to the
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curves on Figs, IV-2 through IV-10 for equivalent values of ^3, , and r/B,,.

For example, the steep portions of the curves on Fig. IV-2 represent the

solutions for the following cases: (a) (in = r/Bj^ = 0. 01 when Aquifer 1 is

being pumped, (b) (^332+ P33) = r/Bgg = 0. 01 or (/332+ p^^) - r/B33 = 0. 01

when Aquifer 3 is being pumped, etc. .

We see that the steep portions of the curves for the pumped aquifer and

for the aquitard on Figs. IV-2 through IV-10 are applicable to arbitrary

multiple-aquifer systems. If there is an impermeable boundary adjacent to

the aquifer being pumped, the curves are functions of the two parameters

/3j; and r/B^j where i designates the aquifer and j the adjacent aquitard. If

there is no impermeable boundary, the curves depend on (i3^^+ ^3^ i-^) and

r/B.. in the aquifer and in the j-th adjacent aquitard, or on (Pii+ /3j i_i) and

r/B. • _ 1 in the aquifer and in the (j- l)-th adjacent aquitard.
i> J

~ '-

In the special case when VKj' (p^c^ » V Kj_]^>j_]^' Cj_i' (i.e. /3^j » Pi,] -l)

the parameter (/3jj+ l^ii-i) can be replaced with Piy The effect is the same

as if the (j
- l)-th aquitard was impermeable. For example, if V^K2' </'2' '^2 "^^

^K3>3'C3' and V K4' cp^ 04' « VKsVs'cs' (i.e. Ii32«h3 ^^ Pm«I^33)'

then Aquifers 3 and 4 together with Aquitard 3 can be considered as an indepen-

dent two-aquifer system. This shows that the definition of the boundaries of a

multiple-aquifer system is a relative matter, and that it depends on the accuracy

which one is willing to accept in applying our theory to the particular problem

at hand.

At large values of time, drawdown in the system can no longer be

predicted using analogy to the two-aquifer case. It can be obtained only through

numerical evaluation of the solutions for the three-aquifer case developed in

Section II-D, or through the application of numerical methods such as the finite

element technique described in Chapter III.
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V. A PROPOSED APPROACH TO THE PROBLEM OF EVALUATING

MULTIPLE-AQUIFER SYSTEMS BY MEANS OF PUMPING TESTS

The importance of pump testing as a means of evaluating the properties

of water bearing strata has long been recognized by groundwater hydrologists.

As a result, a variety of methods have been developed to assist the engineer in

analysing the results of such tests. Whereas in most of these methods the

aquifer is treated as if it had no hydraulic communication with the adjoining

layers, several procedures have also been developed for the case when the

aquifer is being supplied with leakage from above or from below.

In the first part of our discussion, we shall briefly review the methods

that are currently being used in evaluating the results of pumping tests in

"leaky" aquifers . We will show that these methods have theoretical and prac-

tical limitations which may often lead to erroneous interpretation of the field

data. This will demonstrate the need for a new method of field testing multiple-

aquifer systems which would enable one to evaluate the permeabilities and

storage coefficients of all the aquifers and aquitards in a given system. An

approach to this problem will be outlined in the second part of this chapter.

A. REVIEW OF METHODS CURRENTLY USED TO ANALYSE RESULTS
OF PUMPING TESTS IN LEAKY AQUIFERS

1, Steady State Method

In 1946 Jacob (28) described a solution for the steady drawdown in an

infinite leaky aquifer that is being pumped at a constant rate. In his develop-

ment, Jacob considered a two-aquifer system in which all layers are homo-

geneous, isotropic, horizontal and infinite in radial extent. The pumping well

has an infinitesimal radius and completely penetrates one of the aquifers (Fig.

V-1) . Jacob assumed that flow is essentially horizontal in the pumped aquifer,

vertical in the aquitard, and that drawdown in the unpumped aquifer remains
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zero at all values of time. His solution

can be written in the form
/^/

Qi

2itT]L
Ko{r/Bii) (V-l)

Ho

H,

Hi

/// /

K,

Kl'

r Qi

'/ / //// //^/////////

Aquifer 2

82=0

Aquitard 1

K,

II

II

II

>r

Aquifer 1

Fig. V-l. Two-aquifer system with

zero drawdown in unpumped aquifer.

According to Polubarinova Kochina (38,

p. 382) , a similar solution was devel-

oped by Myatiev in 1946 (32).

In his work, Jacob described a

graphical procedure of analysing the re-

sults of pumping tests in leaky aquifers,

using a semilogarithmic graph of

KQ(r/B2j) versus r/B^,. A logarithmic

graph of KQ(r/B,,) versus r/B,.. was

used by Walton (43,44) to investigate leaky aquifer conditions in Illinois.

Still another method of analysing field data, based in part on Eq. V-], was

proposed by Hantush in ]956 (17). The details of these procedures have been

summarized by DeWiest (7, p. 278-282). They enable the engineer to cal-

culate the transmissibility, Tj = K^Hp of the aquifer being pumped, and the

dimensionless parameter r/B,
^
= r Vk^'/CK^H, H,'). Knowing the values of

r, H] and Hj', it is then possible to determine the permeabilities, Ki and

K ', of the aquifer and the aquitard, respectively.

This method has the following limitations:

a. As all steady state solutions, the method does not enable one to obtain

the storage coefficients of the aquifer or the aquitard.

b. It was shown in Section IV-A-4b that steady state cannot be reached in

the system, unless the transmissibility of the unpumped aquifer is

much larger than that of the aquifer being pumped. In reality, the sys-

tem will seldom reach steady state unless the aquitard is overlain by
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a body of water such as a lake, a reservoir, or a river, which can

maintain a relatively constant head at the top of the aquitard.

Occasionally, the method may yield relatively good results

even when the transmissibility of the unpumped aquifer is not larger

than that of the pumped aquifer. For example, if (in = r/B, , = 0. 01,

the curve of s^ versus t„ in the pumped aquifer (see Fig. IV-2) for

the case when T^ = T^ (i.e. /Sgj^ = /J^^^ and r/B^^ = ^^^^11^ ^'^ ^^^^

close to the horizontal steady state curve. The error introduced by

applying Eq. V-l to this problem would therefore be relatively small.

However, applying this equation to the case when T^ = T„ and /3i -i
=

r/B =1.0 would lead to significant errors in the results, since the

deviation between the curves in Fig. IV-4 is much larger than in

Fig. IV-2 .

2. The r/B Method

A solution for the non-steady state drawdown in an infinite leaky

aquifer that is being pumped at a constant rate was obtained by Hantush and

Jacob in 1955 (16). In their development, Hantush and Jacob adopted a two-

aquifer system similar to the one shown in Fig. V-1. They again assumed

that the layers are homogeneous, isotropic and infinite in radial extent; that

a well of infinitesimal radius completely penetrates one of the aquifers; that

flow is essentially horizontal in this aquifer and vertical in the aquitard; and

that drawdown in the unpumped aquifer remains zero at all values of time.

In addition, Hantush and Jacob neglected the storage of water in the aquitard.

Their solution may be written in the form

Ql f
"l = 17^ J

"^P

1/4 to

(r/Bii)2
-y-

4y J y

dy
(V-2)

where tj) = a-j^ t / r^

.
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In 1956 Hantush (17) outlined a graphical procedure of analysing the

results of pumping tests in leaky aquifers, based on Eq. V-2. His procedure

involves the use of a family of t5^e curves of s^^ versus tj^ where each curve

corresponds to a given value of r./Bj2 (Fig- V-2), Observed values of draw-

down in the pumped aquifer, s-^, at a given radial distance from the pumping

well are plotted against the time, t, on logarithmic paper. Since s, is pro-

portional to Sq and t is proportional to tj-j, the field data can be matched

graphically to one of the type curves, which determines the value of r/B,,.

One then chooses a match point anywhere on the overlapping portion of the

two sheets and records the values of s, and t that correspond to the coordinates

Sj-j and t of the match point, respectively.

Knowing the values of Q^ and H,, the permeability K, of the aquifer

can be determined from s^ = (Q^/4 ttTj) SQ(tQ, r/B, ,). Since the values of

r/B^., r, H^, H ' and K^ are now all known, the permeability K,' of the

aquitard can also be calculated from r/B,, = r V K]^'/(Kj^ HxH^') . In addition,

the specific storage Sg = c/'iCj^y of the aquifer can be obtained from t^ =

Despite its wide acceptance among ground water hydrologists (7,8,

39,43,44), the r/B method is limited in application and may often lead to

erroneous results. Its main disadvantages are as follows:

a. The method does not enable one to obtain the specific storage of the

aquitard.

b. The assumption of no drawdown in the unpumped aquifer implies that

a steady state must eventually be established in the system. This is

why the curves in Fig. V-2 become horizontal at large values of time.

The limitations of this assumption have been discussed in Section V-

A-1 in connection with the steady state method.

c. The steep portions of the curves in Fig, V-2 coincide with the Theis

solution, implying that leakage at small values of time is negligible.

However, from Section rV-A-4a and from Figs. IV -2 through IV-9
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Fig. V-2. Dimensionless drawdown versus dimensionless time

from Hantush and Jacob (16) solution for infinite

leaky aquifer neglecting storage in aquitard. [After

Witherspoon et al. (47)]

Fig. V-3. Dimensionless drawdown versus dimensionless time

from Hantush's (21) asymptotic solution for infinite

leaky aquifer considering storage in aquitard. Valid

at tj)<1.6/3ii2/(r/Bii)4 [After Witherspoon etal. (47)]

-325-



we know that these portions of the curves are actually functions of

j3ii. For example, let us consider Figs. IV-4 and rV-9, in both of

which r/B = 1. 0. Comparing the curves for the pumped aquifer

will reveal that they are different in both figures, simply because the

values of /3, , are not the same. In addition, the effect of leakage at

small values of time depends on the magnitude of P-,-,; it is negligible

when [S-,, is small, but it can be significant when (i-,-, is large.

In the particular case when drawdown in the unpumped aquifer

remains zero (i.e.
/32i

- ^/^oi ^ ^^' ^^^ curves in Figs. IV-4 and

IV-9 become horizontal at large values of time and reach the same

value of Sy^ as the corresponding curve for r/Bi-i = 1, on Fig. V-2.

We therefore conclude that while the horizontal (steady state) portions

of the curves in Fig. V-2 are correct (provided that there is no draw-

down in the unpumped aquifer), the steeper (transient) portions of

these curves are generally not. This may be explained as follows:

During the first stage of the pumping operation, most of the leakage

is derived from storage in the aquitard At this stage, neglecting the

effect of storage in the aquitard is similar to neglecting the effect

of leakage in general. Since storage in the aquitard was neglected

in the development of Eq. V~2, the resulting curves (Fig. V-2) do

not show the effect of leakage at small values of time. As time goes

on, the relative importance of water that comes from storage in the

aquitard diminishes, while more and more leakage is contributed by

the unpumped aquifer. By the time steady state is reached, all the

leakage is supplied by the unpumped aquifer and the amount of water

stored in the aquitard remains unchanged. At this stage, the storage

capacity of the aquitard has practically no influence on the behavior

of the system, and Eq. V-2 is correct.

Since the steep portions of the curves in Fig. V-2 are not correct

unless /3-|^2 ^^ very small, they should not be used indiscriminately
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in the interpretation of field results. This means that since the field

data can only be matched with the horizontal portions of these curves,

the value of r/B, , cannot be determined uniquely. We conclude that

the r/B method may give correct results when /3, , is sufficiently small,

but it may lead to erroneous results when /3, , is large.

3. The j3 Method

In I960, Hantush (21) developed asymptotic solutions to the same

problem that was discussed in Section V-A-2, except that this time he did

not neglect the effect of storage in the aquitard. In his work, Hantush also

treated the more general case of an aquifer that is enclosed between two aqui-

tards. His solutions have been discussed earlier in Section IV-A-4e.

In the case of a two-aquifer system such as in Fig. V-1, Hantush's

solution for small values of time (Eq. rV-3) can also be written in the form

si = r^ ^D (b'/^ii)
(v-3)

where t„ = chi t/r^. A graphical procedure of analysing the results of pumping

tests has been developed on the basis of this solution. The procedure involves

the use of type curves of Sq versus tp such as in Fig. V-3, each curve cor-

responding to a given value of /3,, . As in the r/B method, observed values

of drawdown, s. , at a given radial distance from the pumping well are plotted

against the time, t, on logarithmic paper. The field data are then matched

graphically with one of the curves in Fig. V-3, which determines the value

of /3, , . A match point is chosen anywhere on the overlapping portion of the

two sheets, and its dual coordinates, s, , s^ and t, t^, are recorded.

Knowing the values of Q, and H, , the permeability K^ of the aquifer

can be determined from Eq. V-3. The specific storage of the aquifer, Sg -

(/^^Cj^y, is obtained from t^ - K^t/((^ cj^y r^). Since ^^x ^^ known, the value of

K,' i^-,' ci' can be calculated from
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_r_
/ KiVi'ci'

This method is quite limited in application, its main disadvantages

being as follows:

a. The shapes of the curves in Fig. V-3 are not too different from the

Theis curve. Thus, it may be difficult to decide which of these curves

should be used in matching the field data.

b. The curves bear no indication as to the range of t„ within which they

are valid. As shown in Section IV-A-4e, this range depends not only

on the value of /Si -i , but also on that of r/B.,,. This is illustrated

in Figs. rV-15 through IV-20. For example, Fig. IV-] 5 indicates

that while the curve for [S-,-^ = 0. 0] is valid up to tj-j « 5x 10^ when

r/Bj-[ = 0. 04, its range of validity is reduced to t^ < ]. 5x]0~ in

the case when r/Bi
-j

= ] . 0. Thus, one may have difficulties in de-

ciding whether his field data fall within the range of validity of any

particular curve in Fig. V-3.

c. The method does not enable one to obtain the permeability, K ', and

the storage coefficient, 83 ' = Vi' C]^' y , of the aquitard, only the value

of their product, K]^'Sg '.

B. A NEW APPROACH TO PUMP TESTING MULTIPLE-AQUIFER SYSTEMS

It is apparent from Section V-A that the conventional methods of pump

testing leaky aquifers are often not adequate for their purpose and that they

may lead to erroneous interpretation of the field data. We shall now outline

a new approach to field testing multiple-aquifer systems, based on the theory

developed in this work. The new procedure should be applicable to systems that

contain an arbitrary number of aquifers, aquitards and aquicludes, and may

possibly enable one to evaluate the properties of all the layers in such systems.

To start with a relatively simple problem, consider a system that

consists of two aquifers and one aquitard, as shown in Fig. V-4, In order
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to determine the properties of the aqui-

tard or the lower aquifer, a well that

has been drilled to the bottom of this

aquifer is completed as a pumping well.

In the same aquifer, another well is

drilled at a distance Tq from the pumping

well and is completed as an observation

well. In addition, one or more obser-

vation wells are completed in the aqui-

tard, at the same radial distance Tq

from the pumping well, at different ele-

vations. In our example, we shall as-

sume that three such wells have been

completed in the aquitard and that the

>;^Qi

Hr Ko

V / '^ /' y/ '.
.

Aquifer 2

z/Hi'pO.8

Observation Points

Aquitard 1

>r

Fig. V-4. Observation points in pump-
testing a two-aquifer system,

midpoints of their perforated sections are located at the elevations z/H^ =

0.2, 0.5 and 0.8, respectively. Because of the relatively steep vertical gradients

that develop in the aquitard, the perforated sections of these wells should be short

enough so that the observed drawdowns are representative of the actual drawdowns

at the midpoints of these sections.

The next step consists of withdrawing water at a constant rate from the

pumping well and measuring the drawdowns that occur in the observation wells.

These drawdown data are then plotted on transparent logarithmic paper against

the time, t, and are compared with type curves of dimensionless drawdown versus

dimensionless time such as in Figs. rV-2 through IV-9. Obviously, these figures

are only a small sample of the large number of similar figures, corresponding to

different values of ^\\ and r/Bj^j^, that must be developed prior to such a test.

The possibility of matching field data uniquely to only one family of such curves

needs further investigation. The curves for the unpumped aquifer in Figs. IV-2

through IV-9 are not needed in the interpretation of the field data and are not a

part of the type curves

,
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As one may recall from Chapter IV, the shapes of the type curves depend

on the values of Pn and r/Bn at small values of time, and on the values of (in,

r/Bu, /321 and r/B2i at large values of time. Thus, at large values of time, the

curves for any given values of (in and r/Bj^j^ split into a large number of branches,

each branch corresponding to different values of (32i and r/B2i. This was illus-

trated in Fig, rV-lO. In Figs. IV-2 through IV-9, only two such branches were

shown for each curve, and the same must be done in all the additional type curves

that will be developed prior to the test. Superposition of the field data is done only

along the relatively steep portions of the type curves, before these curves split in

two. In this way, the type curves will be functions of only two parameters, (i-j^i

and r/B-j^j, and the need for additional type curves representing different values

of ^21 ^^^ ''^/^21 ^^ avoided. Since superposition is based not only on the shapes

of the type curves but also on the spread between these curves, there is an in-

creased likelihood that the field data can be matched uniquely to only one family

of type curves

.

As an example. Fig. V-5 shows a set of hypothetical field data that were

obtained from the pumping test described earlier. We assume that a unique graph-

ical match between these data and the type curves in Fig. IV-5 ((in =0.01 and

r/Bii = 0.02) WIS obtained by shifting the two plots while keeping their axes parallel,

until the field data fell on the type curves prior to the points where these curves

split in two. The field data need not coincide with the type curves to the right of

the points where these curves split.

After the values of (in and r/B-n have been determined from the type

curves, a match point is selected anywhere on the overlapping portion of the two

sheets, and the values of Sq and tj) that correspond to the drawdown s and time t

at this point are recorded. In Fig. V-5, the values of these quantities at the match

point are S|-) = 1.0, s =0.5 feet, tj) = 10.0 and t =2.5 x lO"*^ days.

With these data secured, the properties of the pumped aquifer and the

aquitard can now be easily determined. Knowing the values of Qj and Hi, the

permeability of the aquifer can be obtained from
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Fig. V-5. Comparison of hypothetical data from pumped aquifer

and adjacent aquitard with theoretical solutions.
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K Q is given in gpm, s and H^ in feet, and Kj in gpd/ft^, one can rewrite this

equation in the form

114. 6Qi Sn

The specific storage of the aquifer is determined from

K. t

to = —--2 (V-5)

and when t is in days, rQ in feet, K-^ in gpd/ft^ . and Sg^^ in feet"-'-, this can also

be written as

K^t

'1 " 7.48"ro2tD
SsT = ---Z^TT- (V-5a)

The permeability of the aquitard can be calculated from

which can be rewritten in the form

{r/Bii)2KiHiHi'
Ki' = —

2
(V-6a)

^o

Finally, the specific storage of the aquitard is obtained from

^ii 4 Hi V K^Ss^

which can be expressed as

16/iu2Hi2KiSsi
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In our example , let us assume that

Hj^ = 100 feet r^ = 200 feet

Hj^' =200 feet Q^ = 1000 gpm

We found from the type curves that

^11 = 0-01

r/Bn = 0.02

s = 0. 5 feet when Sq = 1.0

t = 2.5 X 10~3 days when tjj = 10.0 P

From Eq, V-4a, the permeability of the aquifer is

__
114.6x1000x1.0 ^ 2,292 gpd/ft21 100 X 0.5

^^

From Eq. V-5a, the specific storage of the aquifer is obtained as

_ 2292x2.5x10-3 ^ g ^-1
^si 7.48x2002x10

^-y^^xiU tt

The dimensionless storage coefficient, Si, of the aquifer is Si = Sg^^Hj^

= 1.914 X 10"^ X 100 = 1.914 X lO""*. The [oermeability of the aquitard is

determined from Eq. V-6a as

0.02^ X 2292 X 100 x 200 . ^.. ,„_i ...o
Ki' = ^^ = 4.584 X 10 ^gpd/ft^

Finally, from Eq. V-7a, the specific storage of the aquitard is found to be

,^
16 X 0.012 X 1002x2292x1.914x10-6 ^ 3^27 x 10-6 ft-1

si 4.584 X 10-1 X 2002
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In the above example we assumed that there were three observation,

wells in the aquitard at the elevations z/Hj' =0.2, 0.5 and 0.8. Similar

results could perhaps be obtained with only one or two such wells in the

aquitard. However, it seems that the larger is the number of these wells,

the easier it may be to match the field data uniquely to one of the families

of type curves . Performing additional tests at different radial distances

from the pumping well should increase the likelihood of obtaining a mean-

ingful result by this procedure, but this has not been investigated.

As a more general case, let us consider a system that consists of an

arbitrary number of aquifers and aquitards, a part of which is shown in Fig. V-6.

One may recall from Section IV-B

that at small values of time, draw-

down in the i-th aquifer (if it is be-

ing pumped) is a function of the

single parameter (/3j i-i+ )3ij)-
At

the same time , drawdown in the over

lying aquitard depends on the two

parameters ((3y j_x+ /3y) and r/B^j,

and in the underlying aquitard on

Wi
,
j-1 + M and r/Bi

^
j.^ . How-

ever, the forms of Eqs. IV- 3 and

IV -4 are comparable to those of

Eqs. W-IO, rV-11 and IV-12,

respectively. Therefore, as

mentioned in Section IV-B, the

relatively steep portions of the

/-^--^



(or r/B^ j_]^ if drawdown is being observed in the (j-l)-th aquitard) . For

example, instead of
^-^i

= 0.01 and r/Bj^j. = 0.02, Fig. IV-5 should be labeled

(/?! j_l+ /3ij)
= 0.01 and r/B^j = 0.02.

If the pumping test is performed in the i-th aquifer while drawdown is

being observed in the j-th aquitard, Eqs. V-4a, V-5a, and V-6a become

114.6 QiSD
Ki = —^, (V-8)

^Si = 7.48ro2tD
^'^^

(r/Bi^)2KiHiHf
Kj' = ^7^2 (V-10)

where K^ and Kj' are in gpd/ft^, Qj is in gpm, Hi, Hj', ro, and s are in feet,

t is in days, and Sgj is in feet"-"-. Eqs. V-8 through V-10 can be used to

evaluate the properties of the i-th aquifer and the permeability of the adjacent

j-th aquitard. If drawdown is being measured in the (j-l)-th aquitard, these

equations are still applicable if one replaces the subscript j in V-10 by j-1.

It is, of course, possible to pump the i-th aquifer and at the same time

measure the drawdowns in both aquitards, j-1 and j. In this manner, one

obtains two sets of field data from a single test; one set of data for the

aquifer and the upper aquitard (i.e. (/3j i_i+ /Jjj) and r/Bjj) and one set for

the aquifer and the lower aquitard (i.e. (iSj j_i+ jSij) and r/Bj j.^). Since the

values of r/B^ and r/B,- ;_i are not necessarily the same, the two sets of

data may be matched to different familes of type curves and the values of

(^j ;_2^+ /3j;), r/Bjp and r/Bj j_i can be determined from these curves. By

choosing a match point for each set of data and following the procedure described

earlier, one can then use Eqs. V-8 through V-10 to obtain the properties of the

aquifer and the permeabilities of the enclosing aquitards.
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In the two-aquifer case, Eqs. V-7 and V-7a were used to evaluate the

specific storage of the single aquitard adjacent to the aquifer being pumped.

However, in the more general case of an aquifer that is enclosed between two

aquitards, such as in Fig. V-6, Eq. V-7 must be rewritten in the form

(^i,j-l+^ij) 4H1 L
^' KiSs,

(V-11)

Although the values of (/Sj j_i+ p^) , Kj, Sg-, Kj', and Kj.^' have been previous-

ly determined, the quantities Sg._ and Sg. cannot be obtained from Eq. V-11.

Occasionally, one may find that one of the aquitards is much less

permeable than the other and its effect on the drawdown in the aquifer is

relatively small. For example, if V Kj_i' « V Kj' , the first term on the right

hand side of Eq. V-11 can in most cases be neglected, and the specific storage

of the j-th aquitard can be calculated from

^ Kj'Ssj'

(ft.M-^ij) -N -I^, yii[^ (V-12)

In such case, the less permeable aquitard can be considered as one of the

"impermeable" boundaries of the multiple-aquifer system.

When the permeabilities of the aquitards are such that none of them can

be neglected, the only way to evaluate their specific storage by means of

this procedure is to perform similar tests in additional aquifers. As an

example, consider a system that consists of four aquifers and three aquitards

as shown in Fig. V-7. We saw that the specific storage, Sso'. of Aquitard 2 cannot

be determined from a single pumping test in Aquifers 2 or 3. However, it is

possible to determine the value of Sg ' from two pumping tests, either in

Aquifers 1 and 2 (with observation wells in Aquitards 1 and 2) or in Aquifers 3

and 4 (with observation wells in Aquitards 2 and 3). Thus, a test in Aquifer 1
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will yield the values of (i-^^ and

I'/B, , , which can be used to evalu-

ate the properties of Aquitard 1,

K]^' and Sg,'. A test in Aquifer 2

will yield the properties of this

aquifer together with the values of

W2I+ 1^22) ^^'^/^22- Knowing

the properties of Aquifer 2 and

Aquitard 1, one can calculate the

value of /321- Since 0821+ 1^22) ^^

known, the value of /322 is obtained

from /J22 = 0321+ /322) ~ /321-

Finally, knowing the values of /322

and r/Bp2' together with the pro-

perties of Aquifer 2 , enables one

to use Eqs. V-8 through V-10 and

Eq. V-12 in calculating the specific

storage of Aquitard 2 , 832' • A

similar procedure can be used to

^^y y/^''^//y/ /////// y /. /

H.

"3

Hr

-3e

H.

H.-

H,

H,

TTTJ

K. Aquifer 4

K, Aquitard 3

K. Aquifer 3

^2' Aquitard 2

K.- Aquifer 2

ie-

Ki Aquitard 1

-^e

Ki Aquifer 1

/̂//////// ^ ^ / y //////// /'

Fig.V-7. Four -aquifer system.

evaluate the properties of all the layers in any given system.

The success of the above method of pump testing multiple -aquifer

systems may depend on our ability to detect, with a sufficient degree of

accuracy and with a minimum of time lag, the extremely small changes in

hydraulic head that take place in the system during the initial stages of the

test. The answer to this problem seems to lie in the application of highly

sensitive pressure transducers to the measurement of drawdowns in the

observation wells. Further investigation into the practical aspects of the

graphical matching procedure is needed before the method can be applied in

the field.
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VI. CONCLUSIONS

1. Analytical solutions for transient flow to a well of constant discharge

in an infinite two-aquifer system have been obtained. These solutions have been

evaluated numerically for selected values of the parameters /3j; and r/Bjj.

2. Analytical solutions for transient flow to a well of constant discharge

in an infinite three-aquifer system have been developed, but the results have not

been evaluated.

3. Asymptotic solutions for small values of time have been obtained for

the pumped aquifer and the enclosing aquitards. These solutions are valid in

multiple -aquifer systems and are relatively easy to evaluate numerically. The

solution for the aquifer is the same as Hantush's modified solution for leaky

aquifers (21),

4. A complete solution to the problem described by Hantush in Case 1

of his "Modification of the Theory of Leaky Aquifers" (21) has been developed.

As one may recall, Hantush's solutions for this problem are restricted to the

pumped aquifer and are valid only at small and large values of time.

5. It was shown that a solution for the above leaky aquifer problem can

also be obtained from the solutions for flow in a three-aquifer system, simply

by neglecting drawdown in the unpumped aquifers.

6. It was shown that when one of the two aquitards is impermeable, the

solutions for the three-aquifer system reduce to those for the two-aquifer system.

When the remaining aquitard is also impermeable, these solutions reduce to the

Theis solution.
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7. The finite element method, which was first adapted to problems of

transient flow in porous media by Javandel and Witherspoon (29) , has been

used to investigate the behavior of a two-aquifer system and to obtain an inde-

pendent check on the corresponding analytical solutions,

8. The analjd;ical solutions were developed with the assumption that

flow is essentially horizontal in the aquifers and vertical in the aquitards. The

error involved in these assumptions was found to be a function of the ratios

between the permeabilities of the aquifers and the adjacent aquitards; the larger

these ratios, the more accurate the analytical solutions. In addition, the error

was found to increase with time and decrease with radial distance from the

pumping well

.

9. When the permeabilities of the aquifers are at least two orders of

magnitude larger than those of the adjacent aquitards, the error involved in the

above assumption can be neglected everywhere except in the vicinity of the

pumping well, at all practical values of time.

10, At small values of time, almost all of the water that leaks into the

pumped aquifer is derived from storage in the adjacent aquitards. At this stage,

neglecting the effect of storage in the aquitards is similar to neglecting the effect

of leakage completely.

11. As time goes on, the relative importance of water that comes from

storage in the aquitards diminishes while more and more leakage is contributed

by the unpumped aquifers. If a quasi steady state is reached in the system, most

of the leakage is supplied by the unpumped aquifers and storage in the aquitards

may safely be neglected.

340-



12. The methods which are currently being used to evaluate the

results of pumping tests in leaky aquifers are limited in application and may

often lead to erroneous results.

13. A new approach to the problem of evaluating multiple-aquifer

systems by means of pumping tests has been proposed. The new procedure

is based on the theory developed in this work and should enable one to evaluate

the properties of all the aquifers and aquitards in a given system. Further

investigation is needed before the method can be applied in the field.
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APPENDIX A HANKEL TRANSFORMS USED

The infinite Hankel transform of order zero, F(a), of a function f(r)

is defined as

OO

HMf(r)] = F(a) = \ r Jglar) f(r) d r (A-1)

The inverse of this transform is given by

OO

f(r) = \ aJQ(ra) F(a) da (A-2)

A particular inverse Hankel transform that is needed in this work is

that of the function

a2n
F(a) = ^ r^ (A -3)

where C is real and n is a non-negative integer.

To obtain the inverse of Eq. A -3, we will use Hankel functions of order

zero defined as

Hq'1) (z) = Jq(z) - iYo(z)

(A -4)

Hq'^Nz) = Jo(z) - IYq^z)

where z is a complex variable. Consider the integral
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taken around the contour shown

in Fig. A-1. The integrand has

simple poles at z = ± i ^ and a

branch point at z =0. We there-

fore choose the negative imaginary

axis as our branch line. Let

iez = Re^" on r

z = e e^^ on y

z = X on the positive real axis

z = X e^^ on the negative real axis

Applying the residue theorem to

Eq. A-5, we can write

ie

Fig. A-1. Contour of integration for Eq. A-5.

°° 2n+l„ (1) 2n+l„ (1)

\ o >o
—^dx+ lim \ o ^9

—^d
J x2+ e2 T, ^'J z2+ ^2

R—oo

+

• 2n+l (1) ;^ 2n+l (2n+l)ie (1) 10. 10

n^^^V "0^^^-^^^)d(xei-).lim f^ ^ Ho^\ree^ice_

J (xei^)2+e2 ^_^J^ .2e2i0+ ^2
de

- 2 TTi times (residue of integrand in Eq. A-5 at z = ii) (A-6)

We can now use the relationship (31, p. 204)

and the asymptotic formula

(A -7)

Kn(z) 2z
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for z — oo and - tr < arg z < it to show that

Ho<'' (^)

2 1 -ze -i V2

when z — °o and - tt/2 < arg z :£ 3 it/2. If Ip denotes the second integral in

Eq. A-6 we therefore have

lim Ij, < lim

R^oo

2n+ 1 „ (1) ,

z2+ |2
ttR <lim

R-*=o

ttr2"^2
~

r2-|2 ^TTRr
-zre -iTT/2

< lim

R^oo

ttR
2n+2

r2-42 v/ttRt
, „, (rR)^ (rR)"^

=

for any finite value of n.

The last integral in Eq. A-6 obviously vanishes at the limit as £ —

because

lim e Jo(e)

£—
=

and

lim cYnit) = lim £ fti£

£—

The residue of the integrand in Eq. A-5 at z = i | can be evaluated with

the aid of Eq. A-7,

Res
2n+l„ (1)

z Hq- ^rz)

z2+ i2 Mi

(ie)^-^^o^^rie)

2ie

= ^e2nHo<^)(ri|) ^ ^e2'^Ko(r|)
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The function Hq( '(z) consists entirely of terms involving £n z and powers of

z^, and is therefore even with respect to real values of z. We also know

(31, p. 199) that Ho^'''^zei^) = - Ho^^^(z) for all values of z. Using these

results, Eq. A-6 becomes

C3C°°

x^"^^[Ho<^>(rx).Ho^^\rx)] ^^ __ ^ ^_
^^n ^2n

^^^^ ^^
c2+ i2

Substituting the Hankel functions from A-4 in the above equation, we

obtain the inverse Hankel transform of Eq. A-3 in the form

f(r) = H-
,2n ,2n+l

i2+ e2
f x'^"+ -^ Jo(x

J x2 + e2

r)
dx (-ifi^'^KQivt) (A-8)

Note that when n = 0, this reduces to an equation that was previously developed

by Watson (45, p. 425),

A particular Hankel transform that is needed in this work is

H^
1 ^ 9§(r,p)

r ar ar

Using the relationships

dJo(x)

dx
Jl(x)

and

d

dx
xJi(x) xJo(x)

we can write

-346-



H' [s(r,p)J = \ r Jo(ar) s(r,p) dr

Jl(ar) s(r,p)

00

ar)— s(r,p) dr

The integral term in this equation can be written as

if a _-
J

Ji(ar) r — s(r,p) d:

- I-- Jo(ar) r— s(r,p)
ar

oo

+ ~
\ -^oCar)^ r^ s(r,P) dr

1 a _~ Jo(ar)r— s(r,p)
If 1 a f a _-- jrJo(ar)-— r— s(r,p) dr

The last term is the required Hankel transform so that

H
1 _a_

r ar
r^s(r,p)

ar J]^(ar) s (r,p) + jQ(ar) r— s(r,p) a2H*[s(r,p)]

Using the boundary conditions

lim s (r
, p) =

r—'OO

a -
lim r— s(r,p)

r—«>
(no flow at infinity)
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and noting that

lim Jo{ar) =

r—oo

lim Jo(ar) = 1

r—

lim rjj^(ar) =

r—
r—"OO

we finally obtain

H^
18 d -

,
9 =

,
o _

a-^ s(a,p) - lim r— s(r,p)

r—
(A-9)
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APPENDIX B. INDICIA L NOTATION

In the indicial notation, matrices are represented by subscripted

quantities which correspond to the individual terms of the matrix. The number

of subscripts indicates the order of the matrix, and the range of each subscript

must be specified in each case.

For example, the quantity N-, where i = 1, ... , I, represents the first

order (1 x I) matrix

(Ni N2 Nj)

A-- represents the second order (I x J) matrix

/'

All A^2

^21

^11

^IJ

^IJ

B- •. represents a third order (I x J x K) matrix, and so on.

The advantage of the indicial notation is that it enables one to manipulate

matrices in the same manner as regular algebraic quantities. This can be done

by observing the following few simple rules

.
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1

1. Repeated subscripts indicate summation over those subscripts. For

example

,

N.M. = N^Mj^ + N2M2 + . .. + NjMj

and

AijBj = AiiBi+ Ai2B2+ ... + AijBj

Thus, NjMj is a (1 X 1) matrix, while Aj^B^ is a (1 x I) matrix. This rule is

known as the "summation convention".

2. No subscript should occur more than twice in any given matrix. Thus,

ntity A^.B:; has no meaning in indici

represents the second order (I x K) matrix

the quantity A^.B:; has no meaning in indicial notation, while the quantity A-.B^^

AijBjk = AiiBik+ Ai2B2k+ ... + AijBjk

3. Suppose that i and j represent the rows and the columns of a matrix

respectively, or vice versa. The transpose of a first order matrix N- can there-

fore be written as N-, and the transpose of a second order matrix A^^ can be

expressed as A^. Thus, to multiply the matrix Nj by another matrix Mj, one

must first transpose Mj to Mj and then express the product in the form NjM^.

Similarly, to multiply A^j by Bj, the matrix Bi must be transposed to B^ and

the product written as A^B^- (Note that A^jBj or AjjBj indicate summation

over j and i, respectively, and that they represent a reduction in the order of

the matrix instead of the increase required by multiplication.)

4. Matrices can be added to (or subtracted from) other matrices only

if they have similar subscripts. For example, the operations Aj+ Bj or A^: +

Bjk have no meaning, while A^+ B^ or A^+ Bjj are well defined. Similarly, it

is incorrect to write A^BjCj - Kj, but the operation AjBj Cj - Kj is legitimate.
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APPENDIX C

INTEGRAL OF THE FUNCTION N^^ N^ OVER THE AREA OF A TRIANGLE

Consider the function

Nn(r.z) -^ (an+bnr+ CnZ)

where n = 1 , 2 , 3 corresponds to

the corners of the triangle on

Fig. C-1, Ej^, bjj, and c^^ are con-

stants depending on the values of r^j

and Zj^ at the corners of the triangle

as defined in Eq. III-20, and A is

the area of the triangle given by

Eq. in-21. Let Nn(k) represent the

values of Nj^(r,z) at the k-th corner

where r = rj^ and z = zj^, such that

Nn(k)= ^(an+bnrk+ CnZ^)

The value of 2 A can be

written explicitly, using Eq. ni-21,

as

h

/

/

s =A - (A2/H) h

-r

Fig. C-1. Cross section of triangular element.

2A '2Z3+ riZ2 + z^r3 - r2Zi - rgZs - zgr^ (C-l)

Substituting for aj^, bjj, and Cj^ their actual values from Eq. ni-20, we can now

evaluate the functions Nj^{k) as follows:
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Nl(l) = ^(^1+ biri+ c^^zi)

^(^2^3 - ^322+ Z2ri - Z3ri+ rgzi - r2Zi) = 1

%(2) = 2A ^^1"^ ^l''2+ C1Z2)

7X (^223 - r3Z2+ Z2r2 - Z3r2+ r3Z2 - r2 Z2) ==

^l(^) " iX^^l'"^l'"3+ C1Z3)

— (r2Z3 - r3Z2+ Z2r3 - Z3r3 + r3Z3 - r2Z3) =

and in general

Nn(k) = <;

if n / k

1 if n = k

(C-2)

Eq. C-2 indicates that N3(l) = N3(2) = and N3(3) - 1. Thus, since

N3 is a linear function of the orthogonal coordinates s and h (Fig. C-1), its

value is zero everywhere along face 3 (opposite corner 3) of the triangle, and

it can be expressed in the form

N3(s,h)
H

Similarly, since N2(l) = N2(3) = and N2(2) = 1, the function N2 is zero on face

2 of the triangle and can therefore be written in terms of s and h as

1 Ai
N._,(s,h) = J(^—^^)
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Using these expressions, the integral of N2N3 over the area of the

triangle, A , can now be easily evaluated. Thus,

H A-(A2/H)h

j^NgNadA =
J y

1

A
(Ai/H)h

H

s --

H H
dsdh

^

a2 „/ AA2 AAi— + h'^
H H

+ h'
/I A22 1 Ai2 AiA2

+ —
2 h2 " 2 h2 " h2

dh

AH
24

_A

12

The integral of N3N3 over the area of the triangle is

H ^A-(A2/H)h

<3 dAj^NaNadA =
^ j

A (Ai/H)h

h h J J,--dsdh

H
A9 Ai

\1 r.2(. ^2. Ai

PJ h [A--h--h dh

AHA
12 12

By appropriately changing the positions of the coordinates s and h so that s coin-

cides with different faces of the triangle, it is possible to use the above two

integrals to show that, in general.

^NnN^d

_A

12

A = <

12

if n 7^ m

if n = m

(C-3)
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If A represents the cross-section of an axisymmetric annular element

of volume V, the functions N^ for any given element remain independent of the

position of this element and may be expressed in terms of s and h only . The

integral of Nn Nj^ over the volume of the element can therefore be written as

2lT ,

\ NnNmdV = \ iNnNmdA rde = 2TTr 1 Nn NmdA
V

where

ri+ 1-2+ rg

With the aid of Eq. C-3, this becomes simply

yNnNjndV =

( 2 TT r)
—

if n 7^ m

(2TTf) 2— if n = m
J. ^

(C-4)
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ABSTRACT

Past studies have shown that there is likely to be a small but finite

chemico-osmotic coupling between the flow of salt and water in the pores

of a soil. A theory is presented which provides a detailed, comprehensive,

phenomenological description of the simultaneous coupled flow of salt and

water under the action of salt concentration and hydrostatic pressure

gradients in soils. A finite difference digital computer algorithm which

employed the theory to analyze the one dimensional coupled flow of salt

and water in a soil subjected to a sudden boundary salt concentration

increase is described. The algorithm was also used to analyze the one

dimensional coupled flow of NaCl and water in a horizontal fine-grained

aquitard at a site in Oxnard, California. Experimental investigation

provided verification of some aspects of the theory, and helped in

developing an understanding of the magnitude of chemico-osmotic phenomena

in soils.

The prime concern of this report is the nature and engineering signi-

ficance of chemico-osmotic effects in fine-grained soils. Existing data

indicate that the magnitude of these effects should increase as void

ratio decreases, size of clay fraction increases and molecular weight

of the dissolved salt increases.

The theory leads to two second order differential equations, which

were developed by applying the principles of irreversible thermodynamics

and the law of conservation of mass to an open continuous system of a

dissolved salt and water in the pores of a soil. The theory was tested

against available data, and found to include the Terzaghi diffusion

equation and Pick's law as limiting cases. It is also consistent with
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van't Hoffs' law and provides a theoretical framework for analyzing and

interpreting earlier work on the simultaneous flow of NaCl and water in

kaolinite clay.

Consideration of the physical significance of the phenomenological

coefficients appearing in the diffusion equations revealed that there are

three types of coupling between the flow of salt and the flow of water in

a soil: drag coupling which is a coupling between hydrostatic pressure

gradient and flow of salt; chemico-osmotic coupling which is a coupling

between salt concentration gradient and flow of water; and void ratio

coupling which is a coupling between void ratio change and flow of salt.

Computer analysis of a normally consolidated clay sample subjected to

a sudden boundary salt concentration increase indicates that the sample

will first chemico-osmotically consolidate, then it will rebound to an

equilibrium thickness less than the original sample thickness. Salt

diffusion into the sample is a smooth process building steadily to equilibrium

which is attained at the same time the sample thickness reaches equilibrium.

The maximum amount of chemico-osmotic consolidation increases with increase

in boundary salt concentration increase, increase in soil compressibility,

increase in drag coupling and increase in void ratio coupling.

Computer analysis of salt and water flow in an aquitard due to lateral

sea water invasion of the upper adjacent aquifer at the Oxnard Site, indi-

cate that chemico-osmotic effects will cause only minor surface subsidence

(.001 ft). NaCl contamination of the aquitard should be negligible for

about 25 years after first arrival of the sea water, and thence become

significant reaching a maximum in about 70 centuries. Pumping of water

from the lower adjacent aquifer increases both the surface subsidence and

rate of contamination of the aquitard and lower adjacent aquifer itself.
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NOTATION

C Degree of solute inflow

D Diffusion coefficient (L^/t)

G Gibbs free energy (M/L2/t2)

11.
R Gas constant (ML /t '/mole/A)

S Entropy per unit volume of solution iyiltr I'LT k^

T Absolute temperature C^A), or dimensionless time

2
U Pore water pressure (M/L/t )

UO, UF Initial and boundary values respectively of u

Z Mole fraction of solute in solution

a Activity of the solvent

c Molar concentration of solute (moles/L^)

e Void ratio

h Hydraulic pressure head (L)

t Time variable (t)

V
-^L^L

~ flow velocity cf solution (L/t)

'^ "^s^^sm

y Distance variable (L)

z Dimensionless length variable

$ Dissipation function (M/L/t^)

7T Osmotic pressure (M/L/t2)

2
3 At/Az is a measure of the fineness of the finite difference

grid

a Total stress (M/L/t^)

U Chemical potential of solvent (ML^/t/mole)
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J^ Vector flow of solute relative to flow of solution
(inoles/t/L2)

J. Vector flow of i^^ component (moles/t/L )

J^ Vector flow of solution (moles/t/L^)

J
' Vector flow of solute (moles/t/L )

Jg Vector flow of solute (moles/t/L^)

L^^ Phenomenological coefficient relating X. to J^
(moles^t/MLJ)

R-j^ First R coefficient

R2 Chemico-osmotic coupling coefficient

Ro Drag coupling coefficient

R^ Fourth R coefficient

R5 Void ratio coupling coefficient

Tj, Value of dimensionless time at 100% chemico-osmotic
consolidation

T QQ value of dimensionless time at 90% solute inflow

U Hydraulic pressure in pure solvent (M/L/f^)

V- Volume of component i per mole of solution (L /mole)

Vj^ Volume of solution per mole of solution (L-^/mole)

X. Vector force due to i^'^ component (M/L/t^)

a.^ Activity of component i in solution

a^ Coefficient of compressibility (Lt /M)

c^ Moles of component i per unit volume of solution (moles/L^)

Ct Moles of solution per unit volume of solution (moles/L-^)

c,

'

Moles of solvent per unit volume of solution (moles/L )

Cg Moles of solute per unit volume of solution (moles/L-^)

Cgjjj Maximum value of c expected during the process (moles/L-^)
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ch' '^hc

iij

-c

ts90

AT

Az

's

\'c

sc

1

Coefficient of consolidation (L^/t)

Portion of y^ which depends only on T

Hydraulic permeability (L/t)

Coupling coefficients (moles L/t)

Number of moles of component i in the solution (moles)

Number of moles of solution in the solution (moles)

Number of moles of solute in the solution (moles)

Time at which 100% chemico- osmotic consolidation occurs (t)

Time at which 90% solute inflows occurs (t)

Partial molar volume of component i in the solution
(L3/moles)

Size of dimensionless time interval in the finite difference
grid

Size of 3-interval in the finite difference grid

Number of moles of solution per unit volume of soil (moles/L^)

Number of moles of solute per unit volume of soil (moles/L-^)

Specific weight of water (M/t^/L^)

Chemical potential of i^" component (ML /t /moles)

Chemical part of chemical potential of i*^" component
(ML2/t2 /moles)

2 2
Chemical part of chemical potential of solution (ML /t /moles)

2 2
Chemical part of chemical potential of solvent (ML /t /moles)

2,2
Chemical part of chemical potential of solute (ML /t /moles)

Effective stress (M/L/t^)

-408-



ACKNOWLEDGMENTS

The authors are indebted to: Professor Lawrence J. Waldron,

Department of Soils and Plant Nutrition, for his continued interest and

help with the research; Professor Paul A. Witherspoon, Department of

Civil Engineering, for helpful guidance with the analysis of field

conditions and for kind assistance in preparing this report for publi-

cation; Dr. Denis Wan, former research colleague, for many hours of

fruitful discussion and friendly encouragement; and Mrs. Ellen McKeon

for typing this report.

It should also be mentioned that this work would not have been

possible without the research funds provided by the State of California,

Department of Water Resources under Standard Agreements 756A72 and

957669.

-409-





I. OSMOSIS AND SEMI-PERMEABILITY

A. INTRODUCTION

In soil mechanics it is usually assumed that pore water moves in

response to two forces; the gravitational force and the hydrostatic

pressure (or suction) force. Forces of electrical or chemical origin

have conventionally been considered to be negligible.

Recent work (22, 23, 30) indicates that there are instances when

both electrical and chemical forces can play a significant role in

moving pore water, thus affecting soil behavior.

This report presents a comprehensive quantitative theoretical formulation

for analyzing the coupled diffusion of salt and water in fine grained soils.

The theory is used in a theoretical computer analysis of ground water

pollution and surface subsidence resulting from sea water intrusion of

a fresh water aquifer in Oxnard, California.

Chapter I provides a historical introduction and description of chemico-

osmotic phenomena, and their place in soil mechanics. A comprehensive theory

for the chemico-osmotic diffusion of one solute and solvent in a porous com-

pressible medium is presented in Chapter II. Chapter III develops a finite

difference algorithm for applying the theory in soil mechanics, and actually

uses the algorithm to analyze chemico-osmotically induced consolidation.

Chapter IV uses a slightly modified version of the algorithm to analyze
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the movement of sodium chloride and water and the surface subsidence

resulting from lateral invasion of sea water into a horizontal fresh

water aquifer at a site in Oxnard , California.

B. HISTORICAL BACKGROUND

Osmosis is a phenomenon which has been studied since about the mid-

18th century. Early experimenters used animal sacs e.g. pig, ox or

fish bladders and intestines as osmotic membranes, and the first

published experiments were those of Abbe Nollet in 17A8 (5, 8).

In 1867 Traube conducted the first osmosis tests on artifically

prepared membranes, made of copper ferrocyaraide precipited in the

pores of porcelain. Probably the first good artificial membranes

were paper parchmentized with 55° - 60° Be sulphuric acid. Since

those early pioneering days a multitude of osmotic pressure measure-

ments have been made using many different types of membranes.

Today we find scientists in many disciplines investigating the

osmotic characteristics of various natural membranes in our bodies, in

animals and plants. This knowledge is used to understand the life process.

For example the diffusion of oxygen through the wall of a lung into the

bloodstream is an osmotic-type phenomenon. Plant nutrients may pass

through various membranes by osmosis enroute from soil water to becoming

a part of plant tissue.

Osmosis membranes are also being used to desalinate sea water by

reverse osmosis (18, 26). In a similar vein they will probably find

application for purification of water polluted with other impurities.
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There is also a growing awareness on the part of water resource

management agencies and geologists that osmotic effects are relevant

when considering the purity and transport of underground water supplies

(22).

C. THE NATURE OF OSMOSIS AND REVERSE OSMOSIS

Low
Concentration Solution

High
oncentratior
Solution

7
/

'a

^

VzzS

Piston

V

\
\

K / A

Semi-Permeable Membrane

a) Initial b) Osmosis c) Reverse Osmosis

Fig. I-l. Simple Osmotic Phenomena
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1, Osmosis

For the purpose of providing a simple description, we make

reference to Fig. I-l. This depicts a U-tube containing a high

concentration solution in one arm separated by a semi-permeable

membrane from a solution of lower concentration (or pure solvent)

in the other arm. If the levels of the two liquids are initially

equal, as depicted in Fig. I-la, solvent will flow from the low to the

high concentration side by osmosis. Equilibrium will obtain when the

hydraulic pressure difference across the membrane is equal to the os-

motic pressure difference. This is depicted in Fig. Ill-lb. If the

membrane is non-leaky, i.e. if it allows no solute whatever to pass

through, the above description of osmosis is complete.

On the other hand if the membrane is leaky, i.e., if it does

allow solute to pass through (even though it be only a small amount at

a very slow rate) , the above description is incomplete. While solvent

flows from the low to the high concentration solution by osmosis,

solute will flow from high to low concentration solution by simple

diffusion. The osmotic pressure difference decreases as the con-

centration difference across the membrane decreases (see Chapter

I-C) . Consequently the pressure decreases as solute diffuses from

the high to the low concentration side of the membrane. In this case

the hydraulic pressure difference across the membrane builds up to a

value less than if the membrane were non-leaky. As time passes and

solute diffuses from high to low concentration solution, the hydraulic

pressure difference decreases. The process reaches equilibrium when
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both solutions are of equal concentration and the osmotic pressure or

hydraulic pressure difference across the membrane is zero.

This description of osmosis is based on the classical method

of measuring osmotic pressure. It represents one initial and boundary

condition. In later discussions we will find occasion to consider

different initial and boundary conditions, and will be interested

in concentration and hydraulic changes within the membrane itself.

The basic driving mechanism in the osmotic process is the

tendency for all things to move to a state of disorder, as formalized

in the second law of thermodynamics. In terms of the concepts of

thermodynamics, a concentration drop across the semi-permeable membrane

represents order, whereas equal solute concentration on both sides of

the membrane represents disorder.

2. Reverse Osmosis

Consider the set-up in Fig. I-la where no osmosis has taken

place, and the liquid levels are equal on both sides of the membrane.

Imagine now that a pressure greater than the osmotic pressure is

applied to the high concentration solution by means of a piston as

shown in Fig I-lc. This will cause solvent to flow from the high

concentration solution to the low concentration solution. Hence

the high concentration solution will become more concentrated and

the low concentration solution will become less concentrated.

This process is known as reverse osmosis, hyperf iltration or

ultra filtration (18). If the high concentration solution is seawater
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and the low concentration solution is pure water, we have a simple

desalination machine. The less leaky the reverse osmosis (or semi-

permeable) membrane, the less will be the flow of salt through the

membrane, and the purer will be the effluent water. The more leaky

the membrane, the less pure the effluent water, and the more in-

efficient the desalination or seawater conversion process.

Much of the literature on desalination is concerned with

finding efficient reverse-osmosis membranes, i.e., membranes which

are non-leaky and which at the same time maintain a high permeability

to water.

D. THEORETICAL ASPECTS OF OSMOSIS

To obtain a better understanding of osmosis we present a development

of van't Hoff's Law, the classical osmotic pressure equation.

Consider the U tube and semi-permeable membrane depicted in

Fig. I-lo The Gibbs equation (18) tells us that if either hydraulic

pressure or solute concentration are changed in the solution in one

of the arms of the U tube, the corresponding change in free energy

will be given by

2

dG = VdU + \ \i± dn^^ (I-l)

i = 1

where G is the free energy of the solution

V is the volume of the solution
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U is the hydraulic pressure in the solution

n. is the number of moles of component i in the solution

Uj^ is the chemical potential of component i in the solution,

given by

Ui =
gi + RT £n a^ (1-2)

where g^ is that part of the chemical potential depending on T only

R is the gas constant

T is absolute temperature

a. is the activity of component i. By convention a = 1 for

pure solvent

From equation I-l

8G

^i=1^i

9^i 3^G
° = (1-3)

1

Also from equation I-l

V = IG
3U

8V 32g

8n. 3u3n. (I-^>
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From (1-3) and (1-4)

V, =i^= ^ (I_5)

where v^ is the partial molar voluma of component i.

Imagine that there is pure solvent under a hydraulic pressure U , on

both sides of the semi-permeable membrane in Fig. I-l.

From equation 1-2 the chemical potential of the pure solvent is

5^ + RT £n 1 =
g^

If solute is added to the solvent in one side of the membrane, the

chemical potential of the solvent on the side increases to

g„ + RT £n a
o

where a is the activity of the solvent

Hence the effect of adding solute is to increase the chemical potential

by

RT £n a (1-6)

To maintain equilibrium and prevent flow of solvent across the membrane

we can apply a hydraulic pressure increase U - U^ , equal to the osmotic
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pressure, to the solution

The increase in chemical potential due to this increase in hydraulic

pressure is given by

U

^ dU
3U

where y is the chemical potential of the solvents in the solution

From equation 1-5 this becomes

U

V dU (1-7)

where v is the partial molar volume of solvent in the solution

At equilibrium the increase of chemical potential in equation 1-6 must

be counteracted by the increase of chemical potential in equation 1-7,

i. e.

vdU = - RT iln a (1-8)

"o

This equation gives us the osmotic pressure U - Up in terms of the
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activity and partial molar volume of the solvent in the solution. The

equation is theoretically exact and its accuracy is limited only by

the accuracy of the relationships between v and U and between a and

solute concentration used.

In practice it is usually adequate to assume that the solution is

incompressible, i.e. that v is a constant. Thus equation 1-8 becomes

RT
\] -]]_=- ^± Hn a

I.e.

TT = - -^ Jin a (1-9)

where tt is the osmotic pressure

In the event that the solution is of low concentration we may use Raoullt's

law which states that the activity of the solvents is equal to the mole

fraction of the solvent, i.e.,

a = 1 - Z

where Z is the mole fraction of the solute and is equal to the number of

moles of solute in the solution divided by the number of moles of solution.

In a low concentration solution we may further assume that

n.
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where n2 is the number of moles of solute in the solution

nj^ is the number of moles of solvent in the solution

n2
Hence a = 1 - — , and substituting this in equation 1-9 gives

"1

IT = -^ £n
V

1-^ RT ^
V "l

because £n 1 -
^2

'

n- n2
_£ since — is small
"i ni

1 ,e,

. = RT-^

because v Is assumed to be constant

Thus

^ = RTC (I-IO)

where C is the molar CDncentration of solute in the solution.

Equation 1-10 is -/an't Hoff's law. It tells us chat the value of the

Dsmocic pressure is directly proportional to the solute concentration in

the solution v-an't Hoff first deduced the law empirically from the

data of Pfeffer (18), The equation gives accurate results for ideal

dilute solutions only, because it neglects interactions between solute

particles which occur in more concentrated solutions-
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E. SEMI-PERMEABILITY

1= Basic Concepts

A porous membrane is said to be semi-permeable to a solution

if the membrane retards the flow of solute more than the flow of

solvent through its pores,,* We will also refer to this retardation of

flow of solute by a membrane as chemico-osmotic coupling. If the

membrane completely prevents the solute from moving through its

pores, the system is said to be semi-permeable and non-leaky. Such

a system exhibits a high degree of chemico-osmotic coupling. If the

membrane only retards the flow of solute very slightly relative to

the flow of solvent, the system is said to be leaky and semi-permeable,

and exhibits less chemico-osmotic coupling.

Semi-permeability depends not only on the characteristics of

the membrane, but also on the properties of the solution. Factors such

as temperature, pressure solute concentration can also have an effect

on the semi-permeability characteristics of certain membrane-solution

systems (18)

o

2 , Mechanisms of Semi-Permeability

Primary mechanisms responsible for semi-permeability have been

suggested, tested and discussed by many workers. We will present a

summary of the most commonly accepted ideas-

To be able to retard the flow of solute a membrane must exert

some sort of molecular frictional resistance to, or braking effect on

Note that this definition includes the classical definition of a semi-
permeable membrane, i.e. a membrane permeable only to solvent (18).
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the movement of solute molecules. Johnson, Dresner and Krauss describe

this process as follows (2b).

"The membrane must be able to affect the thermodynamic
or transport properties of salts and water by forces "

One such force is a physical cr molecular sieving. This

microscopic sieving mechanism is analogous to macroscopic sieving, and

is thought to occur when the pores or voids of the membrane are about

the same size as, or smaller than the molecules themselves; so that

the membrane has the ability to geometrically screen them= In

systems where neither the membrane nor the solute molecules are charged,

and where the membrane pores are saturated with solution, the microscopic

sieving mechanism is the predominant cause of semi-permeability (26),

For example, it is the predominant cause in systems of cellophane

membranes and polymer solutions

Another mechanism which enables uncharged membranes to be semi-

permeable to uncharged solute molecules is dialysis (28). To dialyse

means literally to "dissolve through", and dialysis is envisaged as a

migration or diffusion of solute molecules dissolved in the "solid

state" of the membrane.

A third phenomenon responsible for semi-permeability is the

distillation mechanism . This mechanism was first suggested by Callendar

(18), and is only operative if the membrane is partly saturated, and the

solvent is more volatile than the solute. It can be envisaged as solvent

molecules diffusion in the gas phase across air voids within the membrane

pores Solute molecules will also diffuse in this way, but at a slower

rate than solvent beiause the solvent is more volatile.
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If the membrane is electrically charged, semi-permeability is

likely to be the result of an electrostatic effect. The microscopic

forces at play are sometimes of the primary valence type, e.g, ,

covalent or ionic bonds, sometimes they are secondary bonds, eg,,

hydrogen bonds or short range Van der Vaals London forces; and

sometimes they are tertiary or long range bonds, e,g. contombic forces.

At present we are not able to state which forces are active

in which membrane-solution systems.

Membranes which exhibit semi-permeability due to electrical

charge are called permselective . The fact that some membranes are

semi-permeable to solutions of inorganic ions which are about the

same size as water molecules (e.g. cellulose acetate membranes and

Na , Cl~ solution) is held as confirmation that permselectivity is

an electrostatic rather than a geometric screening effect.

If the membrane is positively charged, it is referred to as

an anion exchange permselective membrane. The positive surface charge

binds the solute anion; hence retarding the flow of solute.

If the membrane is negatively charged, it is referred to as

a cation exchange permselective membrane. The mechanism of retardation

of flow of solute is analogous to that for anion exchange permselective

membranes

.

Spiegler (26) has proposed a slightly different mechanism for

the cellulose acetate membrane. It is called the hydrogen bonding

mechanism , and is similar to dialysis except that the solute does

not dissolve in the solid phase of the membrane. Rather, solute
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molecules or ions diffuse in the noncrystalline portion of the membrane

while being held there by hydrogen bonding.

F. SOILS AS SEMI-PERMEABLE MEMBRANES

A semi-permeable membrane can be thought of as a porous medium whose

pores are continuous and which retards and hinders flow of solute more

than the flow of solvent. Soil pores are continuous so soils can be

thought of as membranes. The question is are soils semi-permeable

membranes? Do they have the power of retarding or hindering flow of

solute more than the flow of solvents?

We will attempt to answer this question by incorporating some of

the ideas we have already established and supplementing them with

available experimental data^

There are two possible causes of semi-permeability arising in a soil

whose pores are saturated with a solution.

1 , Permselectivity

The first is permselectivity, and would arise if the soil particles

contained surface electrical charges and the solute particles were

charged. In fact many clay size particles do contain surface electrical

charges (7), and many solutes are charged dissociated ions; for example

most inorganic molecules dissociate into anions and cations in water.

Hence we can expect soils with a large clay fraction to be permselective

to solutions of most inorganic salts in water

Of the three most ccamon clay minerals found in natural soils,

Montmorillonite has the highest volumetric charge density, Illite the
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second and Kaolinite the lowest. Ion exchange capacity is a direct

measure of the volumetric charge density; and is about 100 milli-

equivalents per 100 grams of soil for Montmorillonite, 40 for Illite

and 3-8 for Kaolinite (7). Hence we expect soils with a high

percentage of Montmorillonite to exhibit relatively more permselectivity

than soils with equal percentages of Illite and Kaolinite,

2. Sieving Mechanism

The second possible cause of semi-permeability in soils is the

sieving mechanism. For the soil to be able to hinder the flow of

solute by "microscopic sieving" the diameter of the solute ion, or

molecule, should be of the same order of magnitude as the average

diameter of the soil pores- In this event the soil could be a semi-

permeable membrane to the solution. If the diameter of the solute

ion or molecule is much larger than the average diameter of soil pores,

so that no solute can enter the soil, the soil-solution system will be

semi-permeable and non-leaky. If the diameter of the solute ion or

molecule is slightly larger than the average soil pore diameter, so

that the movements of solute through the soil is retarded, but not

totally inhibited, the system will be semi-permeable and leaky.

One milli-equivalent is 10" -^ equivalents. An equivalent is the number
of electronic charges in one mole of solution and equals 6 x 1023^
Avagadro's number. An exchange capacity of 10 milli-equilvalents
per 100 grams means that each 100 grams of soil particles can exchange
10 X 10"-^ X 6 X 1023 = 6 X lO^l electronic charges.
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Clay particle diameters are generally less than 2 microns or

o

20,000 A (25). Unfortunately it is not possible to specify a lower

bound since not many measurements have been made on soil particle

o

sizes below 20,000 A. However, we do know that clay minerals are

composed of sheets made of basic building blocks which are about

o

10 A thick. Hence an estimate for the smallest clay particle

o

thickness is about 10 A.

The smallest solute particles are inorganic ions such as

Na"*" or CI which are about 1 to 10 A in diameter. An example of a

large diameter solute would be polyethylene glycol 20,000 which is

a synthetic polymer composed of about 100 ethylene glocol molecules

o

each of molecular weight 200 and about 5 A long, bound together in a

o

chain about 500 A long. Another example is amylpectin which is one

of the two component polymers of natural starch (3, 13). It is a

branch-chain type of molecule composed of about 2,000 interlinked

dextrose groups , each of molecular weight around 600 and length

about 20 A. It is difficult to estimate a diameter for these polymers,

because they are neither round nor solid and are in a state of constant

motion. For our purposes however it is probably adequate to assume

that the "diameter" of a large polymer molecule increases as its

molecular weight increases.

A cursory look at the sizes of clay particles and solute

molecules presented above indicates that there can be an overlap between

the two. This means that there is a possibility that soils with a

large clay fraction will probably sieve solute molecules, especially
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large polymer molecules, and hence be semi-permeable. If the soil were

a pure clay of very low void ratio and the solute were a large polymer

like amylpectin, the system could conceivably be non-leaky.

However it seems likely that systems composed of natural clayey

soils and solutions with inorganic solutes will be leaky. In general

we might say that factors which decrease the void ratio, increase the

possibility of the soil being non-leaky, i.e., they increase the

possibility of the system exhibiting chemico-osmotic coupling. Such

factors are particle size distribution, maximum previous consolidation

pressure, structure of the soil matrix, etc. We can also conclude that

for a given soil, the larger the solute molecule the less leaky will

be the system.

It is pertinent to note that there may be little value in

considering molecules of ultra-large molecular weight, since there

is only a finite amount of any solute that can be dissolved in a

given volume of solution, depending on solubility of the solute,

temperature, etc. If the molecular weight of the solute is very

high, then this finite amount of solute may represent a very low

molar concentration and hence only a very low osmotic pressure will

be developed (see van't Hoff's law, equation I-IO)

.

There is very little perceivable chemico-osmotic coupling

in a soil solution system wherein osmotic pressures are very low.

Consequently such systems, whether they be non-leaky or not, are

of not much practical interest to us because we are concerned with

systems exhibiting significant chemico-osmotic coupling.
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3 - Available Data

Little experimental work has been done on chemi co-osmotic

effects in soils. Olsen (22, 23) has made some direct measurements of

chemico-osmotic coupling in a Kaolinite - NaCl solution system. His

experiments are described in some detail in Section II-D-3. We will

only mention pertinent aspects of his results here.

He found that for an increase in NaCl concentration from

10 normal to 10 normal the osmotic pressure varied from 0=6

centimeters of water at a consolidation pressure of 10 atmospheres

to 15 centimeters of water at a consolidation pressure of 700

atmospheres. A theoretical value for the osmotic pressure generated

-3 -7
by an increase in NaCl concentration from 10 normal to 10 normal

in a non-leaky semi-permeable membrane is obtained from van't Hoff s

law as 250 centimeters of water.

Hence we conclude that Kaolinite - NaC solution systems are

semi-peimeable and leaky. Also of significance is the fact that the

system becomes less leaky as the consolidation pressure increases,

i.e., as the void ratio decreases- The implication here is that the

microscopic sieving mechanism is chiefly responsible for the semi-

permeability. As we noted in Section I-E-1 the ion exchange capacity

of Kaolinite is low, hence we do not expect permselectivity to be a

large contributor to semi-permeability in this system.

The system exhibits a relatively large amount of leakiness

at a consolidation pressure of 10 atmospheres. Therefore we expect

that natural soils at consolidation pressures of about 10 atmospheres
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and containing large clay fractions of Kaolinitic type material will

be semi-permeable but relatively leaky to inorganic salt solutions

such as seawater.

For example we expect the soil in the aquitards at the Oxnard

site, discussed in Section III-D to be semi-permeable to seawater

(see Section III-D) i.e., we expect it to exhibit some chemico-osmotic

coupling in the presence of seawater.

Mokady and Low (20) conducted an experiment in which they

imposed a NaCl solute concentration drop of ,05 normal across a

Bentonite sample of thickness 13,2 centimeters. They observed a

flow of water of 2 x 10" milli moles per second through a 2.5

centimeter diameter sample from the low concentration to the high

concentration solution.

If the hydraulic permeability of the Bentonite is assumed to be 10

cm/sec, this observed flow rate corresponds to an induced osmotic pressure

of 97 centimeters of water, van't Hoff's law tells us that a solute

concentration drop of .05 normal generates an osmotic pressure of

1300 centimeters of water. Our conclusion here is that the Bentonite

- NaCl solution system was leaky and semi-permeable.

It is difficult to make an estimate of the degree of leakiness

without having a measured value for the hydraulic permeability of the

Bentonite. However Bentonite is usually more fine grained than

Kaolinite and has a higher ion exchange capacity; hence both microscopic

sieving and permselectivity should play a larger role in Bentonite than

in Kaolinite. This we expect Bentonite to exhibit less leakiness to
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NaCl solution than Kaolinite. The above data do not conclusively

support this contention, perhaps because our estimate of the hydraulic

permeability of the Bentonite is too crude

4 . Conclusions

i. Available data indicate that clay - NaCl solution systems

are both semi-permeable and leaky,

iio We expect natural soils containing a large .:lay fraction to

exhibit leaky semi-permeability, or chemico-osmotic coupling,

ill,. The leakiness in a soil-solution system should decrease

as void ratio decreases.

iv. Since the microscopic sieving mechanism is a component of

semi-permeability in soils, the degree of leakiness should decrease

as the size of the solute molecule increases and the size of the

clay fraction increaseso
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II. THEORY OF CHEMICO-OSMOTIC DIFFUSION

A. INTRODUCTION

This chapter considers theoretical aspects of chemico-osmotic

effects in soils. Firstly a generalized theory for the flow of

solute and solution in a compressible porous medium is presented.

The generalized theory is developed from the postulates of irreversible

thermodynamics and the law of conservation of mass applied to a gen-

eralized system of one solute and one solvent in a porous compressible

medium.

Subsequently the generalized theory is specialized to describe the

flow of solute and solvent in a soil. This is achieved by expressing

some of the variables in soil mechanics notation, by incorporating the

soil mechanics concept of effective stress and by using a constitutive

equation that relates void ratio to effective stress.

Kirkwood (14) developed a generalized theory for the transport of

several species through biological membranes, but did not attempt any

generalized solution. By incorporating some of the terminology and

principles of the discipline of soil mechanics, we have extended

Kirkwood 's work and produced a theory capable of quantitatively

solving a wide range of chemico-osmotic flow problems.

Other workers (1, 22) have performed experiments which verify

some aspects of the generalized theory as we shall see in Chapter III;

but as yet no one has presented a comprehensive set of experimental

data which could be considered an empirical solution to the problem-
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B, GENERALIZED THEORY

1, Assumptions

We consider an open system consisting of a solute and solution

in the pores of a porous compressible medium and we assume:

a. Isotropy and homogeneity

b. Isothermal conditions

c. No electrical or electromagnetic gradients

d. No ion exchange during diffusion

e. The solute acts as a single species; i.e., it does not

dissociate so that different ion species act independently

f. The solution is dilute enough for "ideal solution"

relationships to be valid, and for the flow of solvent and solution

to be considered synonymous

g. The pores of the medium are fully saturated with solution

h. The postulates of irreversible thermodynamics are applicable

to the process^ For experimental substantiation of their validity in

soils see the work of Abd-El-Aziz and Taylor (1) and Olsen (22, 23)

2, Flow Equations

We consider the open system of solute and solution flowing under

the influence of hydraulic pressure and solute concentration gradients

in the porous medium.

The postulates of irreversible thermodynamics tell us that

these irreversible quasi-static flows will generate entropy at a rate

$ given by (10) :
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$ = T i? = ) J grad (- u.) (II-l)
dt / 1 1

where

grad (- y^) = v^ grad (- U) + grad (- u^^) (II-2)

and

y. = g. + RT £n c^ (II-3)

where g. is a function of T only

In equations II-l, II-2, and II-3

T = absolute temperature

S = entropy per unit volume of the solution

J. = flow vector of i^" component in moles per unit time per

unit area

t = time

y. = chemical potential of the i component

V. = partial molar volume of the i component

U = hydrostatic pressure in the solution

y. = chemical part of the chemical potential of the i component

R = the gas constant

c. = number of moles of component i per unit volume of solution

According to the Gibbs-Duhem equation, the grad (- y . ) are related by
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c^ grad (- y^^) = (II-4)

For the two component system under consideration (iI-4) becomes

grad (- M^,^) = - ^, grad (- y^^) (11-5)

where the subscripts L' and s refer to solvent and solute respectively

From (II-l) and (II-2)

2 2

$ = ) -Ji v^ gi^ad (- U) + ) J^ ' grad (- y^^)

i = 1 i = 1

L '^'^] grad (- U) + Jg • grad (- y^^)

i = 1

+ J^, ' grad (- y^,^) from (II-5)

J^ v^ is the vector sum of the volume of solute and solvent
i = 1

flowing through unit area in unit time, i.e., the volume flow

rate of solution.

I
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Thus

2

Jl Vl (II-6)Y^\H-
i = 1

Since the flow rate of solution and solvent are nearly the same

magnitude in an ideal dilute solution (as are also c , and c )

,

L i-*

we may write

Jl = Jl- and c^^ = c^,

and substituting from equations II-5 and II-6, $ becomes

$ = Jl Vj^ grad (- U) + (J^ - ^ J^) grad (- Pg^)
1j

From (II-3)

grad (- u^^) = grad (- g_^) + RT grad (- in c )
SC S b

RT
+ -^ grad (- Cg) (II-7)

because g is dependent only on temperature. It may be noted that the

^ c ^
quantity (J„ - — J^ ) represents the flow rate of solute relative to

CL 1-

the flow rate of solution. If this quantity is denoted by Jp, then

with the aid of equation II-7, ^ becomes
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— - RT
"^ = J^

^L ^^^'^ ^~ U) "^
^D c~ 8"^^^ (~ '^s) (II-8)

The postulates of irreversible thermodynamics tell us further that if

the dissipation function, $, can be written in the form

n

$ = ) J. • XZ'. i

i = 1

for a given system, where J. are generalized "flows" and x. are

generalized "forces", the forces and flows are related by

V

'IJ.. = ) L. . X.

J = 1

where L^. are phenomenological constants. Onsagers reciprocal theorem

tells us also that

L. .
= L

^J ji

i.e., the matrix of the phenomenological coefficients is symmetric.

In our case the "flows" are J. and J^, while the "forces" are

RT
v^ grad (- U) and — grad (- c ) , and they are related byL c s

s
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— PT
Jl = Hi \ ^"^^^ ^~ "^ "^ hi c S^^"^ ^"

''s^
(II-9a)

^n = ^21 v^ grad (- U) + L_ ^ grad (- c ) (II-9b)

with

Ll2 = 4l ^^^-^^^

Both "flows" have units of moles/L t and both "forces" have units

of ML/moles t^ , thus the L. . have units of moles^t/ML

Equations II-9 are the flow equations for a two-component system

of one solute and solution. They can be expanded to describe a multi-

solute solution and to incorporate electrical and temperature effects

as well. In their present form they are suitable for application to

the problems we will consider. For equations II-9 to be valid, the

determinant of the coefficients L.. must be positive definite (10)

i.e.,

hi hi - hi Si >' ° (^^-^°>

In Chapter III we will prove that this relationship is valid for soil-

solution systems

In future developments, we deal more with J than J^, i.e.,

the flow of solute relative to the soil is of more significance than

the flow of solute relative to the solvent. From the definition of

J_ and using equations II-9a and II-9b:
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s -; RT

J_j

^11 \ 8^^^ (" ^^ "^ ^2 c" ^'^^'^ ^~ ^s^

which may be written

^s = (^1 ^L + ^ hi ^L^ S^^^ (- ")

12+ L ^
22 Cg

Li -;RT
grad (- Cg) (II-9d)

3. Continuity Equations

A continuity equation is a mathematical representation of the

law of conservation of mass, and expresses the fact that matter can

neither be created nor destroyed „ Thus the rate of increase of mass

density at any point must equal the rate at which matter flows towards

that point.

For solution flowing in a porous medium this can be written

as (1)

V • Jt
3t

(11-10)

where Yj is the number of moles of solution per unit volume of soil, and

for solute
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V • V -^ (11-11)

where Ys ^^ ^^^ number of moles of solute per unit volume of soil,

4. Diffusion Equations

The diffusion equation for the flow of solution is derived by

substituting (II-9a) in (11-10) to give

^Yl -
,

RT
,

- TT = V-{L V grad (- U) + L12 ~ S^^'^ ("
''s^^ (11-12)

Xd. Li S

Similarly the diffusion equation for the flow of solute is obtained by

substituting (II-9d) in (11-11)

|^= V-{(L2, vj^+^4,v^) grad (- U)

Li

+ (L22 7^ + ^i^ ) grad (- c„)} (11-13)

These equations are similar to those derived by Kirkwood (5). They

are not amenable to quantitative solution because there are seven unknowns

L,
1

, L-ip, L^o, U, c , Yt arid Y- a'^'^ only two equations. In the next

section, we will incorporate further relationships between these variables

so that the problem will be solvable quantitatively.
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C. SPECIALIZED THEORY

We now proceed to reduce the theory to a form suitable for

quantitative solution of a wide range of chemico-osmotic diffusion

problems. We will sacrifice detailed description of the many facets

of the phenomena in order to arrive at tenable usable conclusions.

The accuracy of our development should be comparable to that of the

development of the Terzaghi consolidation theory. Consideration is

first given to a derivation of simple functional relationships for

the L coefficients. Hence we draw on the postulates and methods

of soil mechanics to finally simplify equations 11-12 and 11-13 to

solvable form.

1, Functional Relationships for the L Coefficients

Consideration of the physical significance of the L-coef ficients

enables us to interpret and derive relationships for them, The diffusion

process is a quasi-static non-equilibrium process so that the L-coeff icients

are not necessarily constants but they do have to be continuous functions,

a, Lii

If the solute concentration gradient is zero, or if there is

no chemico-osmotic coupling (ie, L^j - ^21 = 0), the only "force" is

the hydrostatic pressure gradient and equation II-9a reduces to

Jl = Lii v'L grad (- U)

This equation is of the same form as Darcy's law which we know describes
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the flow of liquid under a hydraulic pressure gradient in a porous

medium.

Hence we can relate L-, , to the hydraulic permeability of

the soil, and as a first approximation we assume that it is a constant

b- L-j^2 (= L21)

If there is no hydrostatic pressure gradient, equation

II-9a reduces to

s

This equation relates the flow of solution J to the solute concentration
J-i

gradient, L-i o EL is the "permeability" factor relating the flow to the
^^ c

s

gradient. As a first approximation we assume that an osmotically induced

flow of solution is independent of the solute concentration; i.e., we

assume that the "osmotic permeability" factor is a constant. This is

accomplished by assuming that L is a linear function of solute con-

centration in the form

hi (=4l) =^4 = "^ ^''-'''

where L-^ is a constant and

c is the maximum solute concentration occuring during the

diffusion process-

c. L22

If there is no hydrostatic pressure gradient and no coupling,
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equation II-9b reduces to

RT
Jg = L22 — g'^^d (-Cg)

s

This equation has the same form as Pick's law for the flow of a solute

under a solute concentration gradient.

Hence we can relate L„„ to the diffusion coefficient D, and

as a first approximation, we assume that D is a constant. This implies

that L„„ should be a linear function of solute concentration in the

form

L22 = X L2 (11-15)

where L„ is a constant.

All of the above relationships are to be regarded as

reasonable first approximations, always amenable to re-evaluation if

experimental data indicates the need.

If we define

D = L„ RT lcm_2

^^ Cg
I sec

, _ - 2 / cm
^1 " ^11 ''l ^w I

sec

\

k , = L V ^w moles
""^ 21 L — 1^

' sec cm'
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RT V,

^hc " ^2
cm

sec mole

/

^ch ch sm h
moles

sec cm

D' = ° + ^s khc
cm

sec (11-16)

and substitute in the one dimensional forms of (II-9a) and (II-9d) , we

obtain, after noting that Ct = —
,

Jl = ^h 3h ^hc 3^3

^L ^y v^ 3y
(II-17a)

- X K , T— - D' Tch ay 3y
(II-17b)

Notice that if there is no solute concentration gradient or

if there is no coupling (i-e-, k^c ~ ^ch ~ 0) '^^ ^^^ system, (II-17a)

reduces to Darcys law.

If there is no hydrostatic pressure gradient and there is

no chemico-osmotic coupling, equation II-17b reduces to Ficks law

because in this case J = Jj^ and D' = D. From equations II-9c and

11-16 we can derive a relationship between k^^ and k^,^.

From equation 11-16

-445-



12 RT vt

21 " VL Yw

From equation II-9c, L = L , and therefore

k , X k, c
en _ he s

h':

I.e. ,

Vl Yw RT Vl

^ch =^ '^hc
(1^-18)

2, Solvable Diffusion Equations

The following assumptions, most of them deriving from soil

mechanics , are invoked

a. The constitutive relationship for one-dimensional compression

of a soil is commonly taken as

he = - a^ Aa' (11-19)

where a^ , the coefficient of compressibility, is assumed constant for

small changes of effective stress. This assumption is made in the

development of the Terzaghi consolidation theory (27),
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b. The effective stress o', is defined by

a' = a - U (II-20a)

In chemico-osmotic diffusion problems the total stress is a constant and

for this case equations 11-19 and II-20a yield

Ae = a AU (II-20b)
V

c. 1 + e is assumed constant during the chemico-osmotic diffusion

process. This assumption is made in the development of the Terzaghi

consolidation theory and represents the fact that the soil volume changes

little during the process.

d. Ct is assumed to be a constant because the solution is dilute

i.e. ,

IfL _ n (II-20C)
dt " ^

e. As a first approximation we assume that

D' = D + c, k, (II-20d)
s nc

is a constant for a particular soil-solution system.

Now by definition
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Yo = c —S

—

since i ^. is the porosity of the soil and is a direct measure of the

volume of pores, or solution, per unit volume of the soil. Hence

differentiating with respect to time and remembering that 1 + e is

a constant we obtain

3t 1 + e 8t 1 + e 8t

t

Also by definition

Yl=Cl ^

1 + e

Differentiating with respect to time and remembering that 1 + e is a

constant and incorporating (II-20c) we obtain

(11-22)3Yl ^ ^L 9e

3t 1 + e 3t

Differentiating CLI-20b) with respect to time yields

li = a -^ (11-23)
3t V 3t

Substituting (11-22) into (11-12) and specializing to the case of one-

dimensional flow in the y-direction we obtain

I

I
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'^L 3e 3 J, 9U
, , RT ^'^s

= rr^ < L, , V, f^ + Li^ -^
1 + e 3t 3y

j

11 L 3y 12 Cg 3y

Using (11-23) and (11-16) this becomes

2,
3U _ 3^ 1 + e ^_££

3t
" '^ 3y2

"^
a^ ^hc 9y2

(II-24a)

k (1 + e)

where c = — , the coefficient of consolidation.
V ay

V w
Substituting (11-21) into (11-13) and specializing to the case of one-

dimensional flow in the y-direction we obtain

Cs 3e . e 9^s 3 I n ^ + ""s . v^^U
1 + e 3t 1 + e 3t 3y

^a.,U-uf>|-=

Using equations 11-23, II-20d and 11-16 this becomes

^<^s 1 + e ^ 9
r 9Ui ^ /I ^ ^ n- l±s 9U

= K„u — X —J + (1 + e) D' ——-7 - a„ c„ -—
3t Y„ 9y 3y 3y2 "" ^ dt

(II-24b)

For a given soils solute, and solvent there are only three unknowns

in equations 11-24, i.e., U, c and e. By using Equation II-20b we have a

three equation three unknown system which is amenable to quantitative
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solution as described in Chapter III.

If there is no solute concentration gradient or no coupling,

equation II-24a reduces to

_3U ^ 32u
3t " " 3y2

which is the usual Terzaghi diffusion equation for one-dimensional

consolidation.

If there is no hydrostatic pressure gradient and no

chemico-osmotic coupling then equation II-24b becomes

3cg
1 + e

32c

3y^

Except for the factor 1 + e this equation is the same as the well known

solute diffusion equation. This factor is the inverse of the porosity

of the material. It reflects the fact that the diffusion coefficient

D relates to the flow rate of solute per unit cross sectional area of

solution; and for flow through a soil, the available cross sectional

area normal to the flow direction is proportional to the porosity of

the soil. From a practical point of view this factor is not very

significant, however , because whereas diffusion coefficients often

vary by orders of magnitude, porosities seldom vary by more than

a few percent

.
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D. CHECKS ON DEVELOPMENTS

Before proceeding to a description of the solution of equations

11-24, it is instructive to examine two special cases and some available

data on the magnitude of coupling coefficients.

1. Comparison with Van't Hoff's Law

Here we apply the specialized theory to the special case of

the osmotic pressure test and compare the result with van't Hoff's law.

The osmotic pressure test Is composed of a semi-permeable membrane

of thickness Ay,

a. across which there is no flow at equilibrium (J, = 0)

b. which separates two solutions of the same solute and solvent

c. across which there is a solute concentration difference

equal to C

d. across which there is an equilibrium hydrostatic pressure

drop equal to the osmotic pressure 1T

Integrating II-17a across this membrane we obtain for the conditions

described above

= -^ ^-k -^
Yw Ay he Ay

'^hc
n = - -^ Yw C (11-25)

^h
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Comparing this with van't Hoff's equation for dilute solutions

7T = RTC, we notice that equation 11-25 contains a negative sign

whereas van't Hoff's equation does not. The work of Katchalsky

and Curran (10),01sen (22) and Abd-El-Aziz and Taylor (1) shows

however, that kj^^ (and therefore k^j^, L-|^2 ^'^'^ L2-|) must be negative.

Hence equation 11-25 has the same form as van't Hoff's law.

If the soil behaves as an ideal semi-permeable membrane

separating dilute solutions, we obtain an appropriate value for

the ratio kj^^^'^h ^^ equating the coefficients of C in equations

11-25 and van't Hoff's law to obtain

Y„ = RT
kh 'w

1. e.

_hc
^ _ RT

n i^
(11-26)

Since this relationship is valid only for the case when the soil

behaves as a perfect semi-permeable membrane, it provides an upper bound

estimate for the ratio k, /k^. Any real fine-grained soil will not

behave as a perfect membrane in that transfer of solute from one side

of the membrane to the other will occur. In other words any real fine-

grained soil will be a leaky semi-permeable membrane.
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2. The Case of Negligible Chemico-Osmotic Effects

Consider the case of a solution of uniform concentration diffusing

under a hydrostatic pressure gradient only. If there is no chemico-

osmotic coupling, the solute concentration does not change at any

point, i.e., —§. = and hence the solute concentration remains
ot

3cuniform, i.e., s = 0. For this case equations II-24a becomes
3y

M = c^^ (II-27a)
3t V 3y2

and equation II-24b becomes

(1 + e)K^h 32u 3U
= X —r - a^ c T—

I.e.
,

3U (^ ^ ^^^ch X dh
9t a^. Yw cs 3y2

(II-27b)

From a comparison of equations II-27a and II-27b and the knowledge that

there is only one equation needed to describe the diffusion of solution

under hydrostatic pressure gradients if chemico-osmotic effects are

negligible, we obtain

(1 + e) Kch
Cy = X

^v Yw "^s
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But, by definition of c and K
,^ V ch

(1 + e) kh _
(l + e) (k^h + ^sm ^^h)

Thus

^h=0

and from equation 11-18 therefore

l^hc =

i.e., the coupling coefficients are both zero in a system displaying

no chemico-osmotic coupling. This statement might seem trite, but

it provides us with confidence that the theory is consistent with

physical reality.

3. Comparison with Previous Work

Olsen (22, 23) has made some direct experimental measurements

on chemico-osmotic coupling effects in fine-grained soils. His

experiments provide data verifying the applicability of the principles

of irreversible thermodynamics to a low concentration NaCl solution in

a pure Kaolinite matrix^ He has also made measurements of certain

parameters which enable us to examine equation 11-26.

His experiment consisted of the application of a solute

concentration drop Cg - C^ across a sample of Kaolinite of thickness
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L and cross sectional area A, and the measurement of the hydrostatic

head drop AH, required across the sample to prevent any flow of solution,

Q/t through the sample.

The equation Olsen used was

-^ = k A
t \ ^ AHT + k A

c
in (S/CaI (11-28)

where k, is the hydraulic permeability and k is the coupling coefficient

for hydraulic flow under a solute concentration gradient. For no flow

of solution this equation becomes

= .^ A
I-

4s + k^ A Zn -B ^

I.e.

k^/kj^ = AH/£n (Cg/C^) (11-29)

Hence by dividing the head drop AH by in (Cg/C.) he obtained experimental

values for the ratio k^/k^.

We will use equation 11-26 to deduce theoretical values for this

ratio and then compare them with Olsen 's measured values. First however,

we need a relationship between the theoretical ratio and Olsen 's

measured ratio

r

Comparing Olsen' s flow equation 11-28 with our flow equation

II-17a we notice two fundamental differences
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a. Our equation is in terms of gradients while Olsen's equation

is in terms of differences. This discrepancy can be eliminated by

integrating II-17a over the thickness of the soil sample. This does

not effect the relation between our ratio and Olsen's ratio.

b. Equation II-17a is in terms of grad (- c ) while Olsen's

equation is in terms of £n (Cjj/C.). Now

grad (- in c) = A. £n (- Cg)
° c

"-s

Hence our ratio should be multiplied by Cg before a numerical comparison

can be made between the theoretical ratio and Olsen's ratio, i.e..

RT c

theoretical ratio =

The NaCl concentration within Olsen's sample was 10 N, i.e.,

Cg = 10 ^ N = 10 ^ moles/cc

R = 8.3 X 10^ erg/°K/mole

T = 300 °K

Y^j
= 10 dynes/cc

Tu • 11 ^t. .u .-1 .. 8.3 X 10 X 300 X lO"Thus numerically the theoretical ratio =

10^

= 26 cms of H^O
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Olsen measured values of k. /k^ of from about 0.6 cms of H-O increasing

to about 15 cms of water as the consolidation pressure varied from 1

to about 700 atmospheres.

It should be noted that as the consolidation pressure increases,

the void ratio of the soil decreases and it becomes a less "leaky"

semi-permeable membrane. As we saw in Section II-D-1, the theoretical

value refers to a non-leaky semi-permeable membrane. Hence a comparison

should be made between the theoretical value and the value Olsen

measured at the high consolidation pressure of 700 atmospheres.

In fact agreement is evident. We conclude therefore that the the-

oretical ratio provides an order of magnitude estimate of the chemico-

osmotic coupling effect in real soil-solution systems of the Kaolinite

-NaCl type at very high consolidation pressure.

However, most natural soils are at conslidation pressure considerably

lower than 700 atmospheres and are therefore probably leaky (c.f. Section

I-E-2) , if semi-permeable. The measured ratio of k^/k^ is directly

proportional to the osmotic pressure developed in the system, and in

leaky systems the osmotic pressure developed is less than in a non-leaky

system. This is probably why Olsen 's measured values were less at

low consolidation pressure than at high consolidation pressure.

Hence the theoretical value, which refers to a non-leaky

system provides an upper bound for natural soils. The less leaky

the system, the closer should be the actual ratio to our theoretical

ratio.
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Olsen's results indicate that void ratio, as reflected by

consolidation pressure, has a significant effect on the degree of

leakiness in a Kaolinite-NaCl solution system. Hence when using

the theory for quantitative computation, it will be most accurate

to use a value of kj,j^/kj^ measured in the soil-solution system

under consolidation loads expected in the situation being considered,

If void ratio changes are expected to be small, it would probably be

adequate to assume k , /k constant for the computation.
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III. COMPUTER ANALYSIS OF CHEMICO-OSMOTIC

FLOW AND CONSOLIDATION

A. INTRODUCTION

Having completed our theoretical development, we proceed to a

computer analysis of certain chemico-osmotic problems. Our purpose

is two-fold: firstly, to gain insight into the relative importance

of the different coefficients in equations 11-26, and secondly, to

explore the chemico-osmotic diffusion process itself.

The development of two computer programs is outlined in detail.

These programs are then used to analyze specific chemico-osmotic

diffusion problems.

B. DEVELOPMENT OF FINITE DIFFERENCE EQUATIONS

1. Dimensionless Equations

In order that the results of our computer analyses be as general

as possible, it is necessary to write equations 11-26 in dimensionless

form.

Hence, we define dimensionless parameters:

2 H

where H = drainage path length for the diffusion process

u= "

^max

where U = maximum value of U occurrmg in the diffusion process
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R = _^= 1.0
1 ^V

^ a

(1 + e)

V Umax
l^ch^sm/^v

=
(1 + e) /(I + e) kh

^v U,max av Yw

Y,w
-sm

max

R3 =
(1 + e) K

, u,ch max

Y.w

_ (1 + e) ^max

Y
Csm +

w 'sm

kh (1 + e )

= ^ Uinax (1 + k(,h/kh c^)

R, = (1 + e) D'/c^ = (1 + e) (D + Cg khc)/cv

R5 = a^ U.max

T = Cvt/H^ (III-l)

This last relationship is the same as the Terzaghi relation between the

time factor T and time for one dimensional consolidation. Substituting

equations III-l into equations 11-24, and recalling that x = c /c , we

get from (II-2Aa) I

Umax du c^ Umax 92u khc (1 + e ) Cgm 32^

h2/c, 9T
h2 3z2 \ h2 9^2
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I.e.

from (II-2Ab)

e Cgm 3x d + e) K^h Umax 8 / du\ D'(l + e)csni 92^

h2/cv 3T
-

Yw h2 3z ^ a^f h2 3z2
X ^ +

^max 9u- a c -—
H / cv

I.e.

,

+ R Iji - R5x|H (III-2b)
^ 9z2 ^ 9T

2. Explicit Finite Difference Equations

Herein we present the development of a computer program which

uses equations III-2 and II-20b to analyze the one-dimensional diffusion

of solute and solution in a soil sample (or layer) of thickness 2H.

The basis of the computational procedure is the solution of

finite difference approximations of equations III-2 and II-20b at a

finite number of points within the soil. The process is one dimensional

so that it is only necessary to consider points along one vertical line
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extending from the top to the bottom of the sample. We choose NZINT + 1

(NZINT being an integer defined below) points on this vertical line, one

at each boundary and the others (NZINT-1) equally spaced inside the

sample.

At the start of the process, the two independent variables U

and X are assigned values at each one of these NZINT + 1 points. The

finite difference equations are then used to calculate values of U

and X at each one of these points at some small value, of dimensionless

time, AT, later. The calculation is then repeated, using the values of

U and X calculated for dimensionless time AT, to calculate values of U

and X at each one of these points at dimensionless time 2AT. The

process is repeated for 3AT, 4AT, etc., and the computation can be

terminated at any value of dimensionless time desired.

We now proceed to a more detailed description of some of the

elements of the computer program itself.

a. The Z-T Grid

For purposes of description, we make reference to the Z-T

grid shown in Fig. III-l. Each vertical line on the grid represents

the vertical line extending from top to bottom of the sample, at

different value of T. The integer variable I denotes the NZINT + 1

points on this line and I extends from 1 at the top to NZINT + 1 at

the bottom of the sample. The spacing between any two of the NZINT

+ 1 points being denoted Az, and depicted in Fig. II-l. NZINT is

defined as the number of Az layers into which the sample is divided.

Because the sample is 2 units of z thick, Az = 2/NZINT.
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2=0

Z = 1

z = 2

<^

t

1=1

1=2

AzT

I = NZINT

I = NZINT+1

<^

Center o f

Sample

Fig. III-l. The Z-T Grid

Adjacent vertical lines on the grid are separated by a small

dimensionless time interval AT as depicted in Fig. III-l.
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In any computation, values of AT and Az have to be chosen small

enough so that the approximations inherent in the finite difference

method are good enough for the solution to be stable. This is discussed

further later. A point of intersection of any two lines on the Z-T grid

is known as a nodal point.

Az

I-l.

^Q
AT

Fig. III-2. The Computational Molecule

-464-



To be able to write finite difference forms of equations III-2

which can be solved at any point on the Z-T grid (i.e., at any point

in the soil and at any time as AT and Az tend to zero) , we proceed

as follows.

The computational molecule in Fig.III-2 represents the config-

uration of nodal points on which the finite difference approximations

are based. The molecule is placed on the Z-T grid with its four atoms

on four grid nodal points. The molecule is moved up and down a vertical

line on the grid by varying the value of I in its atoms. It is moved

forward in time by replacing values of U and X in the atoms by those

calculated for later values of dimensionless time T.

When the molecule is at a general point, A, in the Z-T grid,

values of U are denoted by U(I-l) , U(I) and U(I + 1) at the top middle

and lower atoms on the left; and by UV(I) at the atom on the right.

Corresponding values of X are X(I-l) , X(I) and X(I + 1); and XV(I).

The various gradients of u and x at point A are approximated

by the following finite difference forms:

1^
= (UV(I) - U(I)|/AT

ll
= (XV(I) - X(I)]/AT

-^ = (x(I + 1) - X(I - 1)1 /2Az
9z ' '

3u

3z
[u(I + 1) - U(I - 1))/2A2
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32u

3z
f = [U(I + 1) - 2 U(I) + U(I - 1)]/ Az^

1^ = fx(I + 1) - 2 X(I) + X(I - 1))/A2

Also the following notation is used

E(I) = void ratio at point A

BETA = AT/Az^

Substitution of these finite difference forms into equations III-2 gives

the finite difference approximations

{['UV(I) = U(I) + BETA< U(I + 1) - 2U(I) + U(I-l)

+ Rn X(I + 1) - 2 X(I) + X(I - 1) (III-3a)

XV(I) = X(I) + BETA ) R3

E(I) \ 4
(x(I + 1) - X(I - l))(u(I + 1) - U(I -

1)]

+ X(I) (u(I + 1) - 2 U(I) + U(I - l)j

I

+ R/ X(I + 1) - 2 X(I) + X(I - 1)

RcX(I) I ,

-^ UV(I) - U(I)

Ed) ^ '

I

(III-3b)
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c. Solution Procedure

Firstly the initial values of U and X, U(I) and X(I)

I = 2, 3, ... NZINT; and the boundary values of U and X, U(I) and

X(I), 1=1 and NZINT + 1, are inserted on the Z-T grid.

Then values of U and X at T = AT, are calculated by

putting the computation molecule on the vertical line for T =

and calculating UV(I) and XV(I) from equations III-3 for I = 2, 3,

.. . NZINT.

Next UV(I) and XV(I) are renamed U(I) and XV(I) res-

pectively, for 1=2, 3 ... NZINT to save computer storage space.

The process is then repeated for T = 2AT, 3AT, etc.,

and is concluded whenever desired.

In order to keep the solution stable, it was found necessary

2
to keep Az less than 0.2 and the parameter BETA = AT/Az less than 0.5

(23, 27).

d. Computer program

A copy of an explicit finite difference computer program,

which solves the problem of chemico-osmotic diffusion of solute and

solution in a sample, with initial conditions

U(I) = UO

X(I) = XO

and boundary conditions

1=2,3... NZINT
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U(I) = UF
I = 1 and NZINT + 1

X(I) = XF

is to be found in Appendix III-A. These boundary and initial conditions

represent the case of a horizontal soil sample or layer in which there

is initially no gradient of U or X; subject to a change of pore water

pressure (UF = UO) and solute concentration (XF - XO) at both its

boundaries.

It should be noted that this problem is symmetrical about

the centerline of the sample, and hence only half the sample is con-

sidered in the program. This is the reason for the appearance and

use of the parameter N (= (NZINT + l)/2), through the program.

There are two variables in the program which require some

explanation. The first is the variable UC (appearing immediately after

statement 140 in the program) which is the dimensionless consolidation .

UC is denoted by U in Figs. III-4 to III-12, and is also sometimes

called the dimensionless solution inflow or excess pore pressure

dissipation, because by equations II-20b void ratio and pore water

pressure are linearly related. The value of UC at any time is defined

as the average pore pressure dissipation at that time divided by the

average pore pressure dissipation in the steady state. UC is analogous

to the degree of consolidation in normal soil mechanics usage.

The other variable is C which is the degree of solute inflow

and is denoted by C in Figs. III-4 to III-12. The value of C at any

time is defined as the amount of solute having flowed into the sample

at that time divided by the amount of solute having flowed into the

sample in the steady state.
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The basis for calculating UC is now described. C is

calculated in exactly the same manner. The pore pressure isochrone,

ur u-z profile at some value of T is represented in Fig. III-3.

z=0

z=l

z=2

1=1

1=2

I=N

- I=N+1

Center

of Sample

Fig. III-3. Isochrones in Chemi co-Osmotic Consolidation
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According to our above definition

UC = shaded area

2.0 (UF - UO)

Using the trapezoidal rule the shaded area is given by

2A„(UF + U(l) ^ U(l) + U(2) + _ _
+ U(N - 2) + U(N - 1)

2 2 "

""

2

+ MI^JlOULli _ 2U0 = 2 (UF-UO)
2 /

+ 2Az

N

(1 - N) UF + \ U(I)

1 = 2

UC = 1 - Az
(UF - UO)

N

(N - 1) UF - \ U(I)

1 = 2

(III-4)

Equation III-4 is used for the calculation of both UC and C in the

computer program.

The program is written so that it terminates calculation

when both UC and C reach a value of .98. In other words the program

terminates when both the dimensionless consolidation and the degree

of solute inflow reach 98 percent.
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3. Implicit Finite Difference Equations

At any point in the Z-T grid, the computational molecule in

Fig. III-2 yields two finite difference equations, (III-2) with two

unknowns UV(I) and XV(I) . This two-equation two-unknown system can

be solved explicitly, or directly at any point in the grid. In the

development of the implicit method, we use the computational molecule

depicted in Fig. III-4. This molecule yields two finite difference

equations (III-6) produced below, with six unknowns UV(I - 1), UV(I) ,

Fig. III-4. Implicit Computational Molecule
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UV(I + 1), XV(I - 1), XV(I) and XV(I + 1). Hence equations III-6 cannot

be solved explicitly at each point in the grid but have to be solved

implicitly, or indirectly, as described in Appendix III-B.

In this case the finite difference approximations are based

around point A and are

8U

3T
= UV(I) - U(I) /AT

II
= (XV(I) - X(I) /AT

9U ^ J^ J U(I + 1) - U(I - 1)
_j_

UV(I + 1) - XV(I - 1)

3z 2 1 2Az 2Az

3X ^ 1 ; X(I + 1) - X(I - 1) ^ XV(I + 1) - XV(I - 1)

8z 2] 2Az 2Az

32u ^ 1 J U(I + 1) - 2U(I) + U(I - 1)

3z2 2 \ ^^2

UV(I + 1) - 2UV(I) + UV(I - 1)

Az2
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a^x ^ 1 J x(i + 1) - 2x(i) + x(i- 1)

9z2 2
] Az2

^ XV(I + 1) - 2XV(I) + XV(I - 1)

Az2

Substitution into equations III-2 yields

and

UV(I + 1) - 2(1 + g^) UV(I) + UV(I - 1)

U(I + 1) - 2(1 - —^) U(I) - U(I - 1)
BETA

+ 2R2 {X(I + 1) - 2X(I) + X(I + 1)} (III-6a)

E(I)^^^^ " ^^ {R4 - R3 DEEU(I)} - XV(I) {R^ -
bItA ^

+ ^^^^ + ^^ {R^ + R3 DEEU(I)} = ^^ ^{-R4 + R3 DEEU(I)}

BETA+ X(I) {R^ + R • DEEUDT(I)/

E(1)/BETA - R^ DEE2U(I)}

^^^ ^ ^^ {R, + R_ DEEU(I)} (III-6b)
2 ^3
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where DEEU(I) = -^ {U(I + 1) + UV(I + 1) - U(I - 1) - UV(I - 1) }

DEE2U(I) =
Y {U(I + 1) + UV(I + 1) + U(I - 1) + UV(I - 1)

- 2U(I) - 2UV(I)}

DEEUDT(I) = UV(I) - U(I)

Essentially the only difference between the computer program used for

explicit finite difference equations, and that used for implicit finite

difference equations, is in the method of solution of the finite

difference equations. A copy of a program which uses equations III-6

to solve the chemico-osmotic diffusion problems described in the

previous sections is presented in Appendix III-C.

Both the explicit and implicit computer programs were used

to solve a few chemico-osmotic diffusion problems, and both gave exactly

the same solutions. The implicit program, despite the greater complexity

in its derivation, yielded the same solutions in about a quarter of the

computation time because it provides stable solutions for values of

BETA as large as 2.0. As noted above BETA cannot exceed 0.5 if the

explicit program is to yield stable solutions.

4. Physical Interpretation of the R-Coef f icients

The R-coeff icients depend on the particular soil-solution system under

consideration, and it is important that their physical significance be
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explained, in order to be able to understand the results of the computer

analysis.

Equations III-2 depict these constants in their relationship to

the gradients effecting the diffusion process.

Equation III-2a

9u B^u B^x

3T = ^ 8,2
^ ^2 3,2

can be interpreted to mean that at any point in the soil-solution

system:

The rate of change The rate of change The rate of change
of moles of solu- of moles of solu- of moles of solution
tion per unit = tion per unit + per unit volume due
volume volume due to solu- to solution flow

tion flow under under solute con-
hydrostatic centration gradient
gradients

This interpretation derives from the fact that equation III-2a is actually

a statement of the law of conservation of mass applied to the solution.

In practice we measure pore water pressure rather than moles of solution

per unit volume and hence we usually interpret equation III-2a as

The rate of change The rate of change The rate of change
of pore water _ of pore water of pore water pressure
pressure pressure due to + due to solution flow

solution flow under solute con-
under hydrostatic centration gradient
gradient
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R-, (= 1.0) is a constant for all systems, so that the larger R , the

larger is the effect of a solute concentration gradient on the rate

of change of pore water pressure relative to the effect of a hydro-

static pressure gradient on the rate of change of pore water pressure.

This coupling between solute concentration gradient and the rate of

change of pore water pressure is referred to as chemico-osmotic

coupling . R is referred to as the chemico-osmotlc coupling coefficient .

Now from Equation lll-l

_ ^hc ,. '^sm
Ko -
2 kh ^w u.max

For given boundary conditions (i-e-, a given ratio of —5S_) r is
k,

Ujj,^^ 2

he
proportional to r— . Hence R„ can be considered as linearly dependent

on the coupling coefficient ky^ , which is large for systems in which

solute mobility is low; i.e., the chemico-osmotic coupling coefficient

(and chemico-osmotic coupling) is high in non-leaky semi-permeable soil-

solution systems.

Equation IIl-2b is

e ^ = Ro (A (x in.) } + Ra Iji - Rr- xIH
3T 9z 3z 9^2 9T

and can be interpreted to mean that at any point in the soil-solution

system.
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The rate of

change of moles
of solute per
unit volume of

soil due to

rate of
change of

moles of so-

lute per unit
volume of

solution

The rate of
change of moles
of solute per
unit volume of
soil due to

flow induced by
hydrostatic
pressure
gradient

The rate of
change of moles
of solute per
unit volume of
soil due to

flow induced by
solute concen-
tration gradient

The rate of
change of moles
of solute per
unit volume of
soil due to

rate of increase
of moles of so-
lution per unit
volume of soil
because of rate
of change of

void ratio

Hence R-j, R/ and R^ are measures of the relative effects of hydrostatic

pressure gradient, solute concentration gradient and change in void

ratio, respectively, on the rate of change of moles of solute per unit

volume of soil. From Equation III-l

^3 = ^v \ax (1 + kTT^h *-sm

For given boundary conditions, c^^ and U^^^ are fixed. In soil-

solution systems which exhibit little coupling i.e., which are very

leaky semi-permeable membranes, k^ is very small so that the Sc"cnd term will

be much smaller than unity.

Hence

^3 ~ ^v Ujnax (Ill-lOa)

Now the larger R the larger will be the rate of change of moles of solute

induced by a hydrostatic pressure gradient. This together with equation
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Ill-lOa tells us that che larger the compressibility of soil, the

larger will be the rate of change of moles of solute induced by a

hydrostatic pressure gradient.

Physically this is because a flow of solution includes or

"drags" solute with it, and thus contributes to the rate of change

of moles of soluteo This effect is known as drag coupling . The

larger the compressibility of the soil, the larger will be the flow

of solution induced by a given hydrostatic pressure gradient. Hence

the larger will be the rate of change of moles of solute induced by

drag coupling. In other words drag coupling increases as the soil

compressibility increases. Drag coupling also increases as solute

concentration increases simply because there is more solute to be

"dragged" if the solute concentration is higher. R is termed the

drag coupling coefficient .

For soil-solution systems in which there is a large chemico-

osmotic effect, i e. , for systems in which the soil is a non-leaky

k ,

semi-permeable membrane, the term ^li— will have a negative value

smaller than unity; hence Ro will be smaller than a^ ^max.' Physically

this means that drag coupling is low for systems in which the soil is

a non-leaky semi-permeable membraneo This is because a given flow of

solution "drags" less solute with it if the soil matrix acts as an

efficient filter to the solute. In a perfectly non-leaky membrane

there can be no drag coupling by definition, and hence Ro should be

zero. This is shown in the next section.
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From physical considerations we expect the drag coupling

coefficient, Ro, to remain positive because if this were not true,

a flow of solution in one direction could induce a flow of, or

"drag" solute in the opposite direction, a phenomenon which does not

seem possible.

For R3 to remain positive

a,, U (1 + ^^ ) ^^ max ^ u, ^ I ^ ^

-sm

Since all the parameters in this inequality are positive except k^j^, it

will be true if

k, ^
I ^ I

(III-8)
" '-sm

where I
denotes the absolute value

From Equation III-l

R^ = (1 + e) (D + Cg kj^^)/Cv

For a soil in which there is negligible chemico-osmotic coupling,

the term Cg k^,- is very small so that

„ ~ (1 4- e) D

i.e., the larger the ratio of the diffusion constant D to the coefficient

of consolidation c , the larger will be the rate of change of moles of
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solute per unit volume of soil induced by the solute concentration

gradient. Physically this means that the higher the diffusion coefficient

D, the greater will be the flow of solute induced by a given solute

concentration gradient.

In the case where chemico-osmotic coupling is significant, the

term c k^^ will be negative and less than unity, so that R will be

smaller than (1 + e) D/c . Physically this means that a given solute

concentration gradient is less able to cause a flux of solute when the

soil matrix acts as a filter to the solute- As with R , we do not
3

expect R to become negative i.e., we expect
4

D>. c^lVl (III-9)

From Equation III--1

S = ^v \ax

Re is a measure of the effect of the rate of change of void

ratio on the rate of change of moles of solute per unit volume of soil,

For given boundary conditions U is a constant so Re is directly
max J ^

proportional to the compressibility of the system. Hence the greater

the compressibility the greater the effect of rate of change of void

ratio on the rate of change of moles of solute per unit volume of

soil.

Physically this coupling is due to the fact that a change in

void ratio causes a change in moles of solution per unit volume and

consequently a change in moles of solute per unit volume of soil.
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We refer co the phenomenon as void ratio coupling ; and to Re

as the void ratio coupling coefficient . Essentially void ratio coupling

can be considered as coupling between change in solute concentration

per unit volume of soil due to change in void ratio. From the above

discussion, we conclude that void ratio coupling increases as com-

pressibility increases. For the same reason that drag coupling

increases as solute concentration increases, void ratio coupling

increases as solute concentration increases, even though the

void ratio coupling coefficient is independent of solute concentration,

5 . Numerical Values for R-Coef f icients

Equations IIl-l express the R-coeff icients in terms of more

basic parameters. We now assign numerical values to these parameters,

and thereby calculate numerical values for the R-coeffIcients. The

purpose of this is to find a range of values representative of real

soil-solution systems so that the results of .our computer analyses

will be realistic.

The most accurate method of obtaining qualitative results for

a particular soil-solution system would of course be to measure kj^, D,

ku > k , , c , U , and c,^ directly and thence to calculate the R-
hc' ch v max sm ^^•'^^^^y

coefficients to be used in the computations Values of k, , D, U^j^^^^,

Cy and Cgju are relatively easily determined for any given case, and

typical ranges of k, and c^ are quite well known for different soils.

On the other hand little is known concerning the magnitudes of k, ^ and

k^. . Olsen's data (22, 23) cited earlier, are all that are known to
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the writer. Careful and complex experimentation is required for

determination of k , and k^,^.
ch "C

a. Direct Assumption of Values

Firstly we express the R-coef ficients in terms of more

basic parameters by substituting equations 11-18 and 11-26 in (III-l),

Note that (11-26) is based on Van't Hoffs law, i.e., it is

based on the assumption of an ideal non-leaky semi-permeable membrane.

Hence the values which we derive for the R-coef f icients will represent

an ideal non-leaky semi-permeable membrane.

Substitution of (11-18) and (11-26) into (III-l)

Rj^ = 1.0

^hc ^sm _ _
^'^ ^sm

2 " kh ^w U^ax
^ " ~\^Ro =

from (11-26)

,

^3 = ^vV. a.^) = a„U_a.^^)ch ^ _ „ ,T /-I J. he Yw

from (11-18),

\ Umax (1 - 1)

from (11-26) , i.e.,
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R3 =

R^ = (1 + e) (D + C3 kh^)/c^

= (1 + e) (D - RT ^—^)/cV
Yw

from (11-26)

Re = a U (Ill-la)
5 ^ max

Note that R is zero for an ideal non- leaky membrane, ie , there is no

drag coupling in a non-leaky membrane.

Next we assign numerical values to the quantities in the above

equations

.3 3
Y T 10 dynes /cm

T = absolute temperature - 300°K

R = gas constant = 8.317 x 10 erg/mole/'K

2
a = coefficient of compressibility = 0.01 to 10 cm /kg

= 10"^ to 10"^ cm^/dyne

D = diffusion coefficient = 10"' to 10" cm /sec (15, 12)

Cgju = highest change in solute

concentration oc curing

during the diffusion process = 10"-^ to 1,0 N

= 10"^ to 10"^ mole/cc
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U = maximum change in hydrostatic
max ° '

pressure occurring during the

diffusion process = ,005 to 500 psi38 2
= 10 to 10 dynes/cm

c = 10 ^ to 1,0 cm /sec
V

k^ = 10"^ to 10"^ cm/sec
n

Substituting these values into (Ill-la) gives

R = 1.0

R = - 8.317 X 10^ X 300 x (IQ-^ to lO'^) ^ _ ^^^^^^ ^^ ^^^^^^^
2 (103 to i08)

R^ =

R4 ~ [(10"'7 to 10 ^)

3.817 X 10^ X 300 X (10~^ to 10"^) x (10~^ to - 10"^)

^310-

/(lO"'^ to 10) = to + 0.1

R^ = (10"8 to 10-6) (10-^ - 10^) = ,00001 to 100

It should be remembered that these ranges of numerical values for the

R-coefficients are only intended as a rough guide co actual values.

-484-



b. Values Based on Olsen's Empirical Data

Olsen (22, 23) has made some direct experimental measurements

of the coupling effects of NaCl and water flowing in Kaolinite. We will

substitute Olsen's data into equation Ill-i to obtain values for the R-

coefficients which refer to a NaCl solution-Kaolinite system

As described in lI-D-3, Olsen measured the variation of k,

and the ratio as a function of consolidation pressure ranging
^h

from 1 to 700 atmospheres. At low consolidation pressure (= 1 atmosphere)

he measured

c ku_s—nc = _ 06 cm H2O
kh

k, = 10 cm/ sec

c k^^ = - 0.6 X 10 ^ cm^/sec

At high overburden pressure (= 700 atmospheres') , he measured

c^ k, ^ .

-^—£l£ = - 30 cm H,0
kh

_Q
k, =10 cm/sec

c„ k, = - 3 X 10"^ cra^/sec
s he •

The concentration of NaCl solution within Olsen's sample was 10 " mole/cc
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Substitution of these values and estimates of D, c , a , and U into
V V max

equation III-l gives, at low overburden pressure

Rj^ = 1.0

R„ = c -^ —^ = - 0.6 X —^ = - 0.6
2 am , u , p,-5

K-h max lU

R, = a U (1 + ^" fs_Jic ^^^^ (11-18)
3 V max rt Cg kh

3

= ''~' - 1°' (^^8.317 x 107°x 300 x lO'^ ^
'''

= 10"^ (1 - .03) ~ 0.001

R/ = (1 + e) (D + c^ k, )/c, = (10"5 - 10~^)/10-2 - .001

R, = a,, U = 10"^ X 10^ ~ .001
5 ^^ max

At high overburden pressure

R = 1.0

103
R„ = - 30 X ^ = - 0.3
^ 10^

3
R3 = 10'^ x 10^ (1 - —^—7- X 30) - 001

2 X 10
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R^ = (lO"'' - 0.3 X 10 ^)/10 ^ ~ .001

R == 10"^ X 10^ - .001

These numerical values for the R-coef ficients will be used in the theoretical

Investigation of chemico-osmotic consolidation described in Section III-C and

in the Oxnard Basin described in Chapter IV.

6. Proof that L L^^ - L L^, 5>

As noted in Section II-B-2 , the determinant of the matrix of the

L-coef ficients must be positive definite if Onsager's reciprocal relation

is to be valid for the system, i.e., L^ ^ L„„ - L L„ > must be true. We

substitute the relations

hi = \^\ \

L„„ = D c /RT
22 s

L,„ = k, c /RT
12 nc s

L„, = k , x/v Y21 ch L w

From equation 11-17 into the above inequality to obtain:

k, D c k, c k , X
s he s ch _

> (J

or

2 RT RT V, V, Y
v, Y L L w
L w

k, D-k, k.x^O
h he ch
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Thus

k, D > k, k , X
h he ch

and
|k

I

k, D > c |k,
I

'-^' (III-IO)
h s ' he' c ^

sm

because both k, and k , are negative,
he eh

To prove that L^ ^ L ~ ^i o ^oi ^ we have to prove equation

III-IO.

Multiplying equation III-8 by D we get

k, D ^ dI-^I
h e

sm

and using equation III-9 we obtain

k, D > c |k,
I

l-^l
h s ' he ' e

sm

We have ealled upon our experience of the ehemieo-osmotic diffusion

process to derive (III-8) and (III-9) and hence deduced (III-IO) , i.e., we

have used physical arguments to show that the determinant of the L-coef f icients

must be positive definite for soil-solution systems.
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C. CHEMI CO-OSMOTIC CONSOLIDATION

Chemico-osmotic consolidation is induced when the concentration

of the solution in contact with a boundary of a soil mass initially m

equilibrium with its environment is increased If the soil-solution

system exhibits chemico-osmotic coupling, this tends to "suck." solution

out of the soil pores by chemico-osmotic diffusion, and hence the soil

tends to consolidate. If the flow of solute and solution is one-

dimensional, the process can be referred to as one-dimensional chemico-

osmotic consolidation.

One dimensional chemico-osmotic consolidation was simulated on the

computer by using the implicit computer program (c.f. Section lIl-B-2)

with initial conditions

X = XO < 1, for o < z < 2

u=UO=10 t=0

and boundary conditions

x=XF=1.0forz=0,z=2

u = UF = 1 t -J.

(see Section III-B-2) i.e., there is no change in hydrostatic pressure

at the boundaries, but there is a solute concentration increase at the

boundaries at time zerOo
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AT was chosen as =05 and the number of Az intervals on the grid in

Fig. III-l was chosen as 9. The process was simulated for various types

of soils by varying R„ R„, R and R , and for different initial conditions

by varying XO.

1. Results of Analysis of Chemico-Osmotic Consolidation

The results of the computer analysis are presented in the form of

U vs log T and C vs log T curves in Figs. III-5 and III-7 to III-11-, Note

that U is a measure of consolidation and C is a measure of the degree of

solute inflow. (Both of these parameters were defined exactly in Section

III-B-3c) The ranges of variation of the R-coef f icients m Figs, III-5

and III-7 to III-ll are

Rn

R.-

R.

- .01 to - 1.0

00001 to 0.1

.000001 to 0.1

=0001 to 0.1

These ranges are within those deduced in Section III-B-4.

From the results in Figs. III-5 and III-7 to 111-11, two

general observations may be made. Firstly the solute diffusion

process manifests itself as a smooth continuous flow or solute into

the sample, i.e., smooth increase of C with T. It may be noted

incidentally that C starts at 0,11 instead of 0.0 at very low

values of T. This is because of the inaccuracy inherent
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in the finite difference approximations in equation III-4,

Secondly chemico-osmotic consolidation as reflected by the

variation of U with T builds smoothly to a maximum after which it

tends to de:^rease smoothly to zero, reaching equilibrium at about the

same time as the solute diffusion process; i,e., U first increases

smoothly to a maximum value, and then decreases to zero again.

There are exceptions to this rule however Curves 4, 5

and 6 in Fig. I1I-5 show a chemico-osmotic consolidation which

increases smoothly to a maximum value and then stays there.

Curves 4, 5 and 6 in Fig. III-5 represent systems with very low

values of Ro and R/, and high values of R^ , In other words they re-

present systems of very low drag coupling and solute diffusion, but

high chemico-osmotic coupling. According to the concepts developed

in Section III-B-6, such systems tend to behave as non-leaky semi-

permeable membranes Hence lurves 4, 5 and 6 in Fig. III-5 represent

non-leaky semi-permeable membranes and all the other curves in Figs.

III-5 and III-7 to III-ll represent leaky semi-permeable membranes.

We now provide a description if the chemico-osmotic diffusion

process responsible for the chemico-osmotic consolidation and solute

inflow curves in Figs. III-5 and II1-7 to III-ll.

First we consider the non-leaky semi-permeable system

represented by curve 4 in Fig. III-5 For this purpose we

make reference to Fig. III-6a which shows isochrones corres-

ponding to curves 4 in Fig- III-5. The pressure isochrones

are plots of dimensionless pore water pressure, u vs
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dimenslonless sample thickness, z, for various values of dimensionless

time. T. The solute concentration isochrones concentration x are plots of

dimensionless solute vs. dimensionless sample thickness H, for various values

of dimensionless time, T. Both diagrams are symmetrical about the center line

of the soil sample (z = 1.0) because the initial and boundary conditions are

both symmetrical about the center line of the sample

Initially u

and

= 1.0

X = .01

fo r all z

In other words, there is a uniform initial pore pressure and solute

concentration in the sample. At the start of the process, T = 0, x

is increased from 0.01 to 1.0 at z = and z = 2.0. In other words

the solute concentration is increased one hundred fold at both sample

boundaries. The effect of this is to create an osmotic pressure difference

between the solution just Inside the sample boundary and the outside solution.

In Fig. 6a this is represented by a decrease in dimensionless pore pressure,

u, from 1.0 to 0.5. It is this osmotic pressure drop that results in con-

solidation.

The magnitude of osmotic pressure difference in any real case depends

on the coupling properties of the soil. In the case when the soil behaves

as a non-leaky but compressible membrane water will flow out until the

osmotic pressure tending to suck water out is balanced by a return hydrostatic

pressure gradient tending to cause flow in the reverse direction. At equi-

librium there will be no flow of solution and J = at the sample boundary.
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Hence from equation II-17a

k, k,

^ AU' + -1^ Ac =

L w L

where AU' - hy = difference in hydrostatic pressure between the solution
w

and interior of the membrane, and Ac is the concentration difference. Thus
s

k,

AU' = + T-i^ Y Ac (Ill-lla)
\ w s

The actual amount of consolidation accompanying this development of AU' will

depend on the soil compressibility, a . Equation Ill-lla indicates that

the chemico-osmotically induced pore pressure drop at the same boundary

is proportional to the coupling coefficient k , and to the increase in

solute concentration at the sample boundary; it Is inversely proportional

to the hydraulic permeability of the soil. It should be borne in mind that

AU' represents the pore pressure induced in a non-leaky or perfect semi-

permeable membrane. Since real soils will be leaky membranes, other

factors will influence the behavior as will be discussed in connection

with Figs. III-5 to III-ll.

To derive an expression for the chemico-osmotically induced

dlmensionless pore pressure drop at the sample boundary we recall that

Au' = AU'/U
max

and

Ax = Ac /c
s sm
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where U and c are the maximum pore pressure and solute concentration
max sm

respectively during the diffusion process. Substitution in equation Ill-lla

yields

A,,» he ^max ,^Au = Y Ax
kh ^ csm

I.e.,

Au' = R AX (Ill-llb)

from equation III-l.

In Fig, IIl-6a AX = -99 and R2 = 0.5. Hence the chemico-osmotically

induced dimensionless pore pressure drop at the sample boundary Au' =

0.5 X .99 = 0.5, as we noted above. The drop of pore pressure just inside

the sample boundary does not change as time proceeds so that as far as

the pore pressure conditions inside the sample are concerned, ic is

equivalent to a drop of u of 0=5 at the sample boundary at T = 0.

Hence as far as the diffusion process is concerned, the boundary

conditions are

X = 1-0

u = 5

\ z = 0, Z, T >

Thenceforth solute concentration remains unchanged because the system is

non-leaky so that solute mobility is zero. Consequently the solute
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concentration isochrone in Fig, III-6a, and the solute inflow curve

4 in Fig. III-5b do not change with T. On the other hand solvent is

free to diffuse and does; it diffuses out of the sample under the

influence of the chemico-osmotically induced drop in pore pressure

at the sample boundary. The pore pressure isochrones in Fig. 111-6

indicate u in the sample decreases with time.

The total stress is constant in the sample so that a drop

in pore pressure corresponds to an increase in effective stress and

a resulting decrease in void ratio, or consolidation. This consolidation

is depicted by curve 4 in Fig. III-5a. The pore pressure continues

dissipating until the pore pressure gradient is zero within the sample

and u has dropped to 0.5 throughout the sample, as represented at T = 2^0

in Fig. III-6. At this point the diffusion process ends and the chemi co-

osmotic consolidation has reached its maximum, c. f. Fig. IIl-5a.

The solution diffusion .process we have just described is exactly

analogous to that described by the Terzaghi diffusion equation except

that the drainage is caused by chemico-osmotic coupling rather than

mechanical load. The chemico-osmotic consolidation curve 4 in Fig.

III-5a is the same as the Terzaghi diffusion curve with T having the

value .848 at 90% chemico-osmotic consolidation.

If we define T^ to be the value of T which 100% consolidation

first occurs, Fig. lll-5a and Figs. 1II-6 indicate that T^, is about

2.0 for a non-leaky semi-permeable system.

A physical description of the chemico-osmotic consolidation

process in a non-leaky semi-permeable membrane system is that the

increase in solute concentration at the sample boundary chemico-
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osmotically "sucks" solution out of the sample. Equilibrium is reached

when the pore pressure throughout the sample has dropped by an amount

equal to the osmotic-pressure drop corresponding to the solute

concentration increase.

The process is more complicated if the system is a leaky

semi-permeable membrane system. In this case the increase of solute

concentration at the boundary does suck solution out of the sample,

but it also causes solute to diffuse into the sample. Pore pressure

dissipation is more rapid than solute diffusion. Thus by the time

the pore pressure has dropped by an amount equal to the osmotic

pressure drop, solute has just begun to penetrate regions of the sample

close to the boundary. Hence the osmotic pressure drop is less than

Au' at the boundary. In other words the boundary condition is no longer

Au' = 0.5 (or Au' = l^hc'''^h Yw ^'^s) at z = and z = 2, but Au ' is some

smaller value which decreases tc zero as time proceeds.

Fig: Ill-6b , which depicts isochrones for a "leaky" system

represented by curve 1 in Fig. III-5, shows this reduction in pcre

pressure drop and increase in solute concentration near the sample

boundary by the time T = 1.0. As the process proceeds, the solute

continues to diffuse into the sample until solute concentration

throughout the sample is equal to the boundary value. The rate of

Note that several of the isochrones are drawn dashed near the sample
boundary This is because the finite difference mesh was not fine

enough tc enable them to be located exactly Their location was

estimated.
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solute inflow is depicced quantitatively by curve 1 in Fig. III-5b.

As the solute diffuses into the sample, it also continues to

reduce the osmotic pressure drop from the boundary inwards r This

causes a pore water pressure gradient which tends to suck solution

back into the soil. Hence the chemico-osmotic consolidation ceases

and swell begins as shown by curve 1 Fig. III-5a. Equilibrium is

reached when the hydrostatic pressure is equal to 1.0, the initial

value.

At this time the sample thickness is also equal to the initial

value (u= 0) if the soil is elastic and the coefficient of compressibility,

a^, is the same for both consolidation and swelling. Figs. Ill-5a and

III-7a to Ill-lla are drawn on the basis of an elastic soil. However in

actual practice soils are not elastic and a^ is smaller for swelling

than for consolidation. In other words real soils will swell or rebound

less than they consolidate under the same change in effective stress.

Our analysis of chemico-osmotic consolidation has not incorporated this

aspect of real soil behavior, but could easily do so by assigning a

different value of a^ for consolidation and swelling. Real soils, which

are leaky membranes, will chemico-osmotically consolidate to a minimum

thickness and then swell to an equilibrium thickness less than the

original thickness.

The rate at which the solution diffuses back into the soil

depends on the rate at which the solute diffuses into the soil,

because it is the inward flow of solute which chemico-osmotically

"sucks" the solution back into the soil. This is the reason why
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the solute inflow in Fig. III-5b and the degree of consolidation in

Fig. III-5a reach equilibrium together.

We now proceed to discuss some of the further results in Figs.

III-5 and III-7 to III-IO. The value of T at which 90% solute inflow

occurs is called T qq and from Fig. III-7 we observe that as R^ , the

drag coupling coefficient increases, T qq decreases; i.e., the greater

the drag coupling the greater is the rate of solute inflow. Hence

drag coupling has a significant effect on solute diffusion.

On the other hand Fig. III-8 indicates that void ratio coupling

has essentially no effect on either T qq or the rate of solute diffusion.

Figc III-9 indicates that the larger R the smaller T qq. Increasing R^

and keeping all else constant is equivalent to increasing the diffusion

constant of the system (c.f. equations III-l) . Hence Fig. III-9 tells

us that solute inflow is more rapid if the diffusion constant is greater.

We conclude that the diffusion constant is an important parameter for

chemico-osmotic solute diffusion and consolidation.

All the chemico-osmotic consolidation curves in Fig. III-5a

and III-7a to Ill-lla indicate that the value of T at which maximum,

or 100%, chemico-osmotic consolidation first occurs T , is about 2.0.

The actual time at which the maximum amount of chemico-osmotic

consolidation first occurs, t^, is related to T by (c.f. equation III-l)

H^Tp h2
t = = 2.0 -2-
c Cv c^

where c^ is the coefficient of consolidation and H is the drainage
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path length.

The important implication here is that the rate of chemico-

osmotic consolidation is independent of all the coupling coefficients,

type of solute, etc. It depends only on c^ and H.

From Figs. III-5a and Ill-lOa, we see that the amount of chemico-

osmotic consolidation increases as R^ or chemico-osmotic coupling

increases. We can interpret this result in terms of the description

of chemico-osmotic consolidation we offered above: The higher the

chemico-osmotic coupling, the less "leaky" is the system, and hence

the greater the osmotic pressure drop that develops at the sample

boundary for a given solute concentration increase at the boundary.

This means a greater overall osmotic pressure drop throughout the

sample at T^, i.e., a great chemico-osmotic consolidation.

In Fig. Ill-lla we observe that the lower XO, i,e., the

greater the increase of solute concentration at the sample boundary,

the greater is the chemico-osmotic consolidation. This observation

is easily explained if we remember that chemico-osmotic consolidation

depends on osmotic pressure drop in the sample, which depends on the

initial osmotic pressure drop at the sample boundary, which is

directly proportional to the increase of solute concentration

at the sample boundary (c.f equation Ill-lla)

.

We should also note that for a given amount of chemico-osmotically

induced overall drop in pore pressure, the amount of chemico-osmotic

consolidation is proportional to the compressibility of the system

(c.f. equation II-20b).
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Finally we turn our attention to a consideration of the parameters

which are important in determining the degree of leakiness of a particular

system. To do this we confine our attention to Fig. III-5b where both

leaky and non-leaky systems are represented.

Curves 1, 2 and 3 represent leaky systems. Curves 4, 5 and 6

represent non-leaky systems.

Curves 5 and 6 represent two systems displaying different void

ratio couplings or R-. The curves coincide exactly; hence we conclude

that void ratio coupling is not particularly crucial in determining

degree of leakiness.

The difference between curves 1 and 4 is that 1

represents a soil with a higher diffusion constant (R,) than the

soil represented by 4. Curve 1 represents a leaky system, while

curve 4 represents a non-leaky system. Our conclusion is that a

greater diffusion constant is associated with a higher degree of

leakiness.

Curves 3 and 6 differ only in that the drag coupling coefficient

R^ , is higher for curve 3 than for curve 6. Curve 3 represents a leaky

membrane while curve 6 represents a non-leaky membrane. Hence we

conclude that drag coupling is an important parameter in determining

the degree of leakiness of a system. The lower the drag coupling the

lower the degree of leakiness.

It is also important to remember that implicit in R and R, is

the chemico-osmotic coupling effect. The larger the chemico-osmotic

coupling effect, or R„ , or k, the smaller are both R. and R, (c.f.

The values of R^. also differ for these two cases; however this difference
has no influence on behavior as shown by Fig. III-8.
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equation III-l) and hence the less is the degree of leakiness of the

system.

Summary of Results of Computer Analysis

(i) Solute inflow is a smooth process building steadily to

equilibrium.

(ii) For a non-leaky system, chemico-osmotic consolidation

builds rapidly and smoothly to equilibrium. For leaky systems,

chemico-osmotic consolidation builds rapidly and smoothly to a

maximum followed by a smooth swelling.

(iii) TggQ is greater for lower drag coupling and lower

diffusion constant, but is not effected by void ratio coupling.

(iv) T = 2.0 and t^, = 2.0 Yr/c i.e., chemico-osmotic

consolidation reaches its maximum value at a time t which depends

only on the drainage path length, H, and the coefficient of

consolidation c^.

(v) The maximum amount of chemico-osmotic consolidation

increases with increase in chemico-osmotic coupling, increase in

boundary solute concentration increase and increase in soil

compressibility.

(vi) The degree of leakiness of a system decreases with

decrease in drag coupling, increase in chemico-osmotic coupling but

is not effected by void ratio coupling.

We should mention that the scope of these results is limited

to the range of R coefficients used and may not apply to all semi-
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permeable systems.

2 . Implications for Experimentation

As mentioned in the introduction to Chapter II, the work of

Olsen (22, 23) and Abd-El-Aziz and Taylor (1) has provided data

substantiating the validity of certain assumptions inherent in the

development of our theory for chemico-osmotic diffusion in soils.

However, no experiments have been conducted on chemico-osmotic

consolidation per se.

The results of the computer analysis provide us with qualitative

guidelines for setting up experiments on chemico-osmotic consolidation.

Olsen' s experiments (22, 23) indicate that there is very little

chemico-osmotic consolidation in a Kaolinite-NaCl solution system even

when the Kaolinite is at an effective overburden pressure of 700

atmospheres. At this extremely high overburden he observed a chemico-

osmotically induced pore pressure change of 20 centimeters of water for

XO = 0.1. To be able to successfully observe chemico-osmotic consolidation

in the laboratory would require a chemico-osmotically induced pore pressure

drop at least an order of magnitude higher than 20 centimeters of water.

Otherwise the amount of consolidation would be too small to measure with

any precision. We conclude therefore that

a. we require a soil-solution system exhibiting a much higher

chemico-osmotic coupling than a Kaolinite-NaCl solution system.

b. we should consider using as high a boundary solute

concentration increase as possible.
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c. we should plan to use as compressible a soil as possible -

certainly more compressible than Kaolinite under an effective stress

of 700 atmospheres.

Another aspect in the observation of a complete chemico-osmotic

consolidation curve is the time factor. The results of the computer

analysis indicate that T is 2.0 and that T „„ is usually much larger

than 2.0 (c.f. Figs III-5 to III-IO) . Thus observation of a complete

chemico-osmotic consolidation curve will involve observing up to and

including the (real) time corresponding to Tg^Q. Hence it would be

desirable to use a soil-solution system for which T qq is not too

large.

We should therefore attempt to employ soil-solution systems

for which

a. drag coupling is large

b. the diffusion constant is large

Drag coupling

R = a.. U 11+ ^^
3 V max

I
u ^

sm

decreases as chemico-osmotic coupling increases (i.e., as the absblute

mapnitude of P„ and k , , both of which are negative, increase). It also

increases as compressibility increases. Hence we should attempt to employ a

soil-solution system of high compressibility and low chemico-osmotic coupling.

The diffusion constant is usually low for soil-solution systems

wherein chemico-osmotic coupling is high, because high chemico-osmotic
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coupling is associated with low solute mobility. Hence again we

conclude that for low T g^^, we should employ a soil-solution system

of low chemico-osmotic coupling.

However, if the chemico-osmotic coupling is lower than in a

Kaolinite-NaCl solution system, the amount of chemico-osmotically

induced consolidation would probably be too small to measure with

precision. Hence we conclude that we should employ a soil-solution

system which exhibits an intermediate amount of chemico-osmotic coupling

if we expect to measure a reasonably large amount of chemico-osmotic

consolidation in a reasonably small time.

In summary, we should use a soil-solution system

a. exhibiting a higher chemico-osmotic coupling than a

Kaolinite-NaCl solution system

b. exhibiting an intermediate degree of chemico-osmotic

coupling

c. exhibiting a high compressibility

We should attempt to use as high a boundary solute concentration

Increase as possible. In a few words, we should attempt to put a highly

compressible, non-leaky semi-permeable membrane in contact with a

solution of very high concentration.
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APPENDIX III-A

Explicit Finite Difference Computer Program
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This Fortran program solves the one dimensional problem of the coupled

diffusion of salt and water in a soil layer (or sample) of thickness 2.0

subject to various initial and boundary conditions. Solution proceeds by

solving the two simultaneous finite difference equations for diffusion

of salt and water at every point in the finite difference grid directly.

The data input, specifies:

a. The type of soil by defining the phenomenological constants

R , R„ , R , R. and R ; and the maximum and minimum void ratios, EF

and EI respectively

b. The initial pore water pressure and salt concentration, UO and

XO respectively, both constant throughout the sample. Boundary values

of pore water pressure and salt concentration are both equal to 1.0.

c. The number of space intervals on the finite difference grid,

2
XNZINT, and the value of the constant BETA (= AT/AZ ). From the last

two numbers the program calculates the size of the space and time

intervals, AZ and AT respectively, on the finite difference grid.

N.B. BETA should be less than 0.5 if the solution is to be stable.

The results are printed out at logarithmic intervals of dimension-

less time, T, i.e., at T = .01, .02 . . . .09, 0.1, 0.2, . . . 0.9,

1.0, 2.0, . . . 9.0, 10.0, 20.0, . . . 90.0, 100.0, 200.0, . . . etc.

Each printout consists of

a. T

b. Degree of pore pressure dissipation, UC

c. Degree of salt inflow, C

d. Pore pressure and salt concentration isochrones, in tabular form.
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The program ceases calculating when both the degree of pore pressure

dissipation and the degree of solute inflow are greater than or equal

to 98%. After termination of calculation, the program will seek new

data with which to begin another problem. If the data cards are blank

the program terminates.

\
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<;OHlTION OF SOLUTION AND SOLUTE DIFFUSION EXPLICIT METHOD
DIMENSION U(50) UV(50).X(50)»XV(50) E(50) »INCR(50)

»»»»»»» »*»*MEAN I NG OF SYMBOLS*****************************
ll = PWP RATIO AT TIME T

l)V =PWP RATIO AT TIME T+DELTA-T
X=SOLUTE CONC. RATIO AT TIME T

XV=SOLUTE CONC. RATIO AT TIME T+DELTA-T
F ( I) =VOID RATIO AT T IME T

R?,R3,R6, AND R5 ARE CONSTANTS IN DIFFUSION EQUATIONS
(10 =PWP RATIO AT TIME T =

XO =S0LUTE CONC. RATIO AT TIME T=0
FI =INITIAL VOID RATIO
FF=FINAL VOID RATIO
BETA =DELTA-T/DELT-Z SQUARED
XNZINT =N0. OF Z INTERVALS
DELT-Z=WIDTH OF Z-INTERVAL
DELT= WIDTH OF TIME INTERVAL
INT=NO. OF DELT IN 0.1
UPRfCPR ARE DUMMY VARIABLES IN CALCULATION OF UC»C
T=TIME FACTOR
ljC = DEGREE OF CONSOLIDATION
r=DEGREE OF SOLUTE INFLOW
XJ2.J2»J1 ARE DUMMY VARIABLES FOR KEEPING TIME
INT, INTMl » INTMII ETC. ARE DUMMY VARIABLES FOR KEEPING TIME
»»»»»*«»**»#£ NO OF SYMBOLS*************************************
•»»»«*»»«*»»»»»*»*»*»*«»»«*«*»»»**»»****»****»*********

1 fORMAT(7F10.4)
2 FORMAT(3F10.4)
3 FORMAT<//10X,2HT=,F10.4»5X»2HU=»F10.A,5X»2HC=»F10.4)
4 FORMAT ( 10X,2HI = ,U»5X,2HU=.F10.4»5X,2HX=.F10.4)

»»»»*»#»»»READ CONSTANTS FOR CALCULAT IONS******************************
100 READ l,R2»R3»R4tR5»UO,XO»EI

READ 2»EF,BFTA»XNZINT
PRINT 1 R2»R3,R4,R5»U0»X0,EI

»»»»»#CHECK IF THERE IS ANY DATA WITH WHICH TO CALCULATE***************
lF(R2-0. ) lOl.'^tOO.lOl

101 PRINT 2,EF, BETA, XNZINT
»»»»»#»»*»«»»*»»*»*»**CALCULATE OTHER CONATANTS************************

DELTZ=2. /XNZINT
DELT=BETA*DELTZ*DELTZ
N=(XNZINT+l.)/2.
NPLUS1=N+1
XNMIN1=N-1
NMINl =XNMIN1
DELTEE=EF-EI
r)ELTX=l.-XO
nELTU=l.-UO
D=DELTEE/DELTU
D1=DELTZ/DELTU
D2=DELTZ/DElTX
INT =.1/DELT
Jl=l
J2=INT
INTM1«INT-1
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INTMI 1

INTM12
TNTMl ^

no 105

ilO*INT-l
=100* [NT-1
=1000#INT-1
J=l ^9

106

107

AND BOUNDARY CONDI T IONS******»»***»»»******»«

105 TNCR( J)=INTM1
DO 106 J=10»18
INCR( J)=INTM1 1

DO 107 J=19t27
INCR( J>=INTM12
INCR( 28)=INTM13

»»»»#»*»*E5TABLISH INITIAL
DO 1 10 J=2»NPLUS1
IK J) =U0

110 X( J) =X0
X( 1 )=1.
tM 1 ) = 1.

I)V( 1 )=1.
XV( 1 )=1.

»»*»« #»####»«»*»»*»»»»»CALCULAT IONS ACTUAL*** *********** *********
DO 300 JI=1.28

115 DO 130 JR=J1»J2
DO 120 I=2»N
F( I )=EI + (1.-U( I ) )*D
UV( I )=U( I )+BETA* ( (U( I + l )-2.*U( I )+U( I-l) )-R2*(X{ I + 1)-2.*X( I ) +

1X( I-l ) )

)

120 CONTINUE
no 125 I=2»N
XV( I )=X( I )+BETA/E( I)*(R3*((X(I+l)-X(I-l))*(U{I+l)-U(I-l))/4.+

1(U( I+1)-2.*U( I )+U( I-l) ) )+R4*(X( I+1)-2.*X( I )+X( I-l) )

)

r*****4

-R5»X( I )/£{ I )*

X{ I )*

(UV( I

3)-U( I ) )

125 CONTINUE
U(NPLUS1 )=UV(N)
X(NPLUS1 )=XV(N)
DO 130 1=2.

N

IM I )=UV( I )

130 X( I )=XV{ I )##»#»«»**»»» CALCUCATION OF T»UC» AND C**************************
liPR = 0,
no 140 I=2»N
llPR = UPR + U( I )

llC=l.-(XNMINl-UPR)*Dl
rPR=0.
DO 145 1=2.

N

CPR = CPR + X( I )

C=1.-{XNM1N1-CPR)»D2
XJ2=J2
T=XJ2»DELT

#»»»##*#»* #«PR I fgTOUT»*»***»***«*******»***»*»*»**»*»**^
PRINT 3.T.UC.C
no 160 1 = 1.

N

PRINT 4, I .U( I ) .X( I )

»»»*»#*«»«»»»»«CHECK IF PROCESS IS EQUILIBRATED AND INCREMENT Jl AND

140

145

#*»*»

160

J1=J2+1
J2 = JH-INCR< JI )
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IF(UC-. 98)300, 204. 204
?04 IF <C-.98

)

300»350,350
300 rONTINUE
350 GO TO TOO
400 rONTlNlJE

FND

tit

M^
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APPENDIX III-B

Solution of Implicit Finite Difference Equations
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I As mentioned in Section III-2c, equations III-6 cannot be solved

explicitly at any point of the Z-T grid. In fact, they are solved

implicitly using the method of Thomas (2, 6, 16) as outlined below.

We consider the specific problem of the horizontal sample with

initial conditions

\

U(I) = uo

X(I) = xo
>I=2, 3, ...,N+1

where

NZINT + 1
N = 1

and boundary conditions

U(l) = UF

X(l) = XF

Note that this problem is exactly the same as that defined in Section

lll-2b-iv, and we specialize to the case UF = XV = 1.0. Only the upper

half of the sample is considered because of symmetry about the center of

the sample. NZINT is chosen odd so that U(N) = U(N + 1) and X(N) =

X(N + 1).

By writing equation III-6a at all the nodal points between 1=2

and I = N + 1 for one value of T we obtain the following set of

equations
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-21 +
BETA

UV(2) + UV(3) = C0NSTU(2)

UV(2) -21+ ^^^ UV(3) + UV(4) = C0NSTU(3)

UV(N - 2) - 2 1 +^UV(N - 1)

+ UV(N) = CONSTU(N - 1)

UV(N - 1) + (1 + :^^^) UV(N) = CONSTU(N)

(C-la)

where CONSTU(I) = 2-U(I) (1 - JL^) u(I + 1) - U(I - 1) + 2.R2

{X(I + 1) - 2.X(I) + X(I - 1)}

I = 3, 4 ... N

and C0NSTU(2) = 2.U(2) (1 - -1—) - U(3) .UF +2.R2{x(3) - 2 X(2)
BETA

+ XF} - XF

repeating the process for equation III-6b yields the following set of

equations
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- ^^4 + UtI ^ XV(2) + {r, + R. DEEU(2)} iiYllI = C0NST(3)
4 3

Y {R4 - R3
.
DEEUO)} XV(2) - {R^ + |||i } ^^ +

J {R4 + R3 DEEUO) }XV(A) = C0NSTX(3)

1 E(N - 1)- {R4 - R3 DEEU(N - 1) } XV(N - 2) - {R^ + \^^^ } XV(N - 1)
4 BETA

+ Y {R^ + R3 DEEU(N - 1)} XV(N) = CONSTX (N - 1)

1 {R^ - DEEU(N)} XV(N - 1) + {-
R4 E(N)

BETA

+ R DEEU(N)} XV(N) = CONSTX(N)

(C-lb)

E(2) DEEUDT(2)
where C0NSTX(2) = X(2) {- rzTT " Ro-DEEU2(2) + R, + Re

""^""''"'
}

BETA 3 4 :) BETA

^^ {R^ + R3. DEEU(2)}

and CONSTX(I) = X(I) {- ^^^ - R. DEEU2(I) + R4 + R. '

DEEUDT(I)
}

BETA J- "* ^ g£T^

^^^^^^
{R, - R, DEEU(I)} - ^^^±^

2
' J. 2

{R4 + R3 DEEU(I)}
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Both sets of equations contain N - 1 equations and N - 1 unknowns and

are therefore solvable. Consider now the general set of N - 1 linear

equations with N - 1 unknowns in the form.

^22 ^2 * ^23 ^3 = const 2

^32 ^^2 "^ ^33 ^^3 *" ^34 ^4 = const 3

^43 ^3 "^ ^44 ^4 "^ ^45 ^^5
= const 4

^54 ^4 "•" ^55 ^5 "^ ^56 ^6 = const 5

a x+a x,+a,x = const n-1
n-1 n-2 n-2 n-1 n-1 n-1 n-1 n n

^n n-1 ^n-1 + ^nn ^n
= const n

where a's are constant coefficients

x's are unknowns

const 's are constants

(C-2a)
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This set of equations has the same form as both equations C-la and

C-lb, and is solvable by the Thomas method as follows:

Let

^2 ^22

^3 ^33 ^23 ^32/^2

^4 - ^44 - ^34 ^43^^3

F = a - a 1 a -./F , (C-2b)n nn n-1 n n n-1 n-1 ^

and let

D„ = const 2

D = const 3 - a32 D2/F2

D4 = const 4 - a^^ ^^/F^

D^ = const n - a^ n-1 Dn-l/Fn-1 (C-2c)

Hence the first equation of (C-2a) may be written
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^2 ^2 "* ^23 ^3 ~ °2 (C-3-1)

Eliminating x from (C-3-1) and the second equation of (C-2a)

^23 ^32 ^32
(a^, ) X3 + a34 X4 = const 3 - ^rr const 2

33 322 '22

or F3 X3 + 334 X4 = D3 (C-3-2)

Eliminating x^ from (C-3-2) and the third equation in (C-2a)

(a44
^34 ^43

F3
) X4 + a^^ x^ = const 4 - 43

Fo 3

or F4 X4 + 345 X5 = D5 (C-3-3)

F X , + a , X = D ,n-1 n-1 n-1 n n n-1
(C-3-n-2)

Eliminating x^_^ from (C-3-n-2) and the last equation of (C-2a)

*n-l n S n-1 '^n-l^ = constn - a^ ^.^nn u u n n-i pVl n-1
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or

Fn ^n = °n (C-3-n-l

)

From equation C-3-n-l we solve for

Dn

^ =
Fn

Thence back substituting into equation C-3-n-2 we solve for ^^_i

°n-l ~ ^n-1 n rr / ^\X, ^
= X (C-4-1)

Ti-1 p n
*n-l

Then back substituting into equation C-3-n-3 we solve for x „
n-2

Pn-1 - ^-2 n-1 ^n-1
^ , ^

^-2 = Z
(C-^-2)

Fn-2

"2 - ^23 ^3
(C-4-n-2)

^2

Hence the equations are solved.

On the computer the process is actually fairly simple because the

kernel of the solution is equations C-2b, C-2c and C-4 which are
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all calculated in do-loops.

The computer program which solves equations C-la and C-lb

using this procedure is presented in Appendix III-C.
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APPENDIX III-C

Implicit Finite Difference Computer Program
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This Fortran program solves the one dimensional problem of the coupled

diffusion of salt and water in a soil layer (or sample) of thickness 2.0,

subject to various initial and boundary conditions. Solution proceeds by

solution of all the simultaneous finite difference equations for diffusion

of salt and water at a value of T, using the method of Thomas.

The data input specifies

a. The type of soil by defining the phenomenological constants R^
,

R- Ro, R, and R^ and the maximum and minimum void ratios, EF and EI

respectively.

b. The initial pore water pressure and salt concentration UO, and

XO respectively; both constant throughout the sample. Boundary values

of pore water pressure and salt concentration are both equal to 1.0.

c. The number of space intervals on the finite difference grid,

XNZINT, and the size of the time interval on the finite difference

grid, DELT. N.B. DELT and XNZINT should be chosen so that BETA

2
(= AT/AZ ) is less than or equal to 2.0.

The results are printed out at logarithmic intervals of dimensionless

time T,i.e. at T = .01, .02 09, 0.1, 0.2, . . . 0.9, 1.0, 2.0,

. . . 9.0, 10.0 20.0, . . . 90.0, 100.0, 200.0, . . . etc.

Each printout consists of:

a. T

b. Degree of pore pressure dissipation, UC

c. Degree of salt inflow, C

d. Pore pressure and salt concentration isochrones, in tabular form.
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The program ceases calculating when both the degree of pore pressure

dissipation and the degree of salt inflow are greater than or equal to

98%. After termination of calculation, the program will seek new data

with which to begin another problem. If the data cards are blank the

program terminates.

This program solves the same problems as the Implicit program, and

requires less computational time to do so.
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CHEMIC0-05M0TIC CONSOL IMPLICIT 6-POINT
»*»»»#*#»»»»#»#MEAN I NG OF SYMBOLS*****************************

DIMFNSION U(50)»UV(50)»X(50)»XV(50)»E{50) .R(50)» INCR( 50) .CON5TU(20
1)»CONSTX<20)»FU(?0).DU(20)»DEEU(?0) ,DEEU?( ?0) DEFUHK 20) CONST 3X( ?

20),CONSTAX(20)»FX(?0),DX(20)

l) = PWP RATIO AT TIME T

LfV-PWP RATIO AT TIME T +DELTA-T
X=SOLUTE CONC. RATIO AT TIME T

XV=SOLUTE CONC. RATIO AT TIME T+DELTA-T
F ( I

) =VOID RATIO AT T IME T

R2»R3,R4, AND R3 ARE CONSTANTS IN DIFFUSION EQUATIONS
llO =PWP RATIO AT TIME T =

XO ^SOLUTE CONC. RATIO AT TIME T=0
FI =INITIAL VOID RATIO
FF=FINAL VOID RATIO
RETA =DELTA-T/DELT-Z SQUARED
XNZINT =N0. OF Z INTERVALS
DELT-Z=WIDTH OF Z-INTERVAL
DELT= WIDTH OF TIME INTERVAL
INT=N0. OF DELT IN 0.1
UPR.CPR ARE DUMMY VARIABLES IN CALCULATION OF UCC
T=TIME FACTOR
UC=DtGREE OF CONSOLIDATION
C=DEGREE OF SOLUTE INFLOW
XJ2»J2»J1 ARE DUMMY VARIABLES FOR KEEPING TIME
INT» INTMl »INTM11 ETC. ARE DUMMY VARIABLES FOR KEEPING TIME
C0N5TU(I) ARE CONSTANTS IN THE LINEAR EQUATIONS BEING SOLVED
rONSTX(I) ARE CONSTANTS IN THE LINEAR EQUATIONS BEING SOLVED
CONSTl ,C0NST2 ARE DUMMY VARIABLES IN CALCULATION OF UV ( I)

FU(1).DU(I) ARE CONSTANTS USED IN CALCULATING UV ( I

)

DZ2T .DEFU( I ) .DEFU2( I ) »DEFUDT{ I ) »C0NST3X( I ) tCONST^XC I ) ARE DUMMY
VARIABLES IN CALCULATING XV(I)
FX(I),OX(I) ARE CONSTANTS USED IN CALCULATION OF XV(I)
»#»»»#*#*#»»*»»^f\ID OF SYMBOLS*************************************

1 FORMAT(7G10.4)
2 F0RMATI3F10.4)
3 FORMAT(//10X,2HT=.F10.4,5X.2HU=»F10.4,5X»2HC=tF10.4)
4 FORMAT( 10X»2HI= , I4,3X,2HU=»F10.4.5X,2HX=.F10.4)

##»#»»»*»##READ CONSTANTS FOR CALCULAT I ONS********»*****»*»»»**»»****»**
100 READ l»R2»R3»R4,R5.UO,XO»EI

READ 2»EF,DELT»XNZINT
PRINT l»R2.R3»R4.R5»UO.XO»EI

»»#»»»*CHECK IF THERE IS ANY DATA WITH WHICH TO CALCULATE***************
IF(R2-0. ) 101.400.101

101 PRINT 2.EF. DELT. XNZINT
««»*# »***»*»*»»» »»»»c/\|_cULATE OTHER CON ATANTS************»»*»*******

nELTZ=2. /XNZINT
N=(XNZINT+l.)/2.
NPLUS1=N+1
XNMIN1=N-1
nmini=xnmini
deltee=ef-ei
DELTX=1.-X0
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Hi

nFLTU=l.-UO
D^DELTEE/DELTU
D1=DELTZ/DElTU
D2=DLLTZ/DElTX
INT =.1/DELT
Jl = l

J?=INT
INTV1=INT-1
INT^il 1 = 10»INT-1
INTM12=100*INT-1
INTMl "^=1000*INT-1
INT'^1^=10000»INT-1
no 105 J=1.9

105 INCR( J)=INTM1
no 106 J=10.18

106 INCR( J) = INT^111

no 107 J=19«27
)7 INCR( J)=INTM12

DO 108 J=28.36
108 INCR( J)=INTM13

INCR( 37)=INTM1^
i»*»##»»ESTARL ISH INITIAL AND BOUNDARY COND I T I ONS»»»»»»»»****»»»*»»»**»»«

DO 110 J=2tNPLUSl
U( J) =U0

10 X ( J) =X0
Ud ) = 1.

X( 1) = 1.

UV( 1 )=1.
XV( 1 )=1.
DZ2T=DELTZ»DELTZ/DELT
rONSTl=2.»( 1+DZ2T)
rONST2=2.»( 1-0Z2T)
FU( 2 ) =-CONSTl

»»»##»»»»##»»»» »^/VLCUL AT IONS ACTUAL*********»»*»»»*»»*****»»
no 300 JI=1 ,29
»»»#»»#»#»»#»»p J RSTLY SOLVE U/EQUATION »»*»»#*»»#»»*»»

' »»»»»»##»##»»*»»»#«»»CALC.ULATION OF OTHER CONSTANTS*******************
no 130 JR=J1.J2
no 116 I=2»N

116 rONSTU(I)=U(I )*C0NST2-U( I-l )-U( I +1 ) +2. *R2* ( X ( I +1) -2. *X ( I) +X (
I -1 )

)

C0NSTU(2)=C0NSTU(2 )-l.
' nU(2)=CONSTU(2 )

no 117 1=1,3
FU{ I )

= -CONST 1-1 . /FU( I-l

)

[117 nU( I) =CONSTU( I )-DU( I-l ) /FU( I-l )

(N ) =FU(N)-».l ,

#»#«»»»#»»»CALCULAT I ON OF UV,S ********»»»»»»*»»»»*»#»»»***»***
, wv (N ) =DU(N) /FU(N )

1 no 118 I=2,NMIN1
jlie l)V(NPLUSl-I ) = (DU(NPLUS1-I )-UV(N + 2-I ) ) /FU( NPLUSl- I )

UVfNPLUSl )=UV(N)
»»»»»»»»»»#*#»»CALCULATE E( I ) ,S »»*»*»»»»»»»»»»****»*»*»*****»*

no 119 1=2,

N

ill 9 F( I )=EF-( l.-(U( I )+UV( I ) )/2. )*DELTEE
»#»##»»»»»#*»»»#*»»»»»#»»»SOLVE XV-EQUATIONS »*»»»*»*»»»******
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*»»»»»»##»»»## CALCULATION OF CONSTANTS ***»»**»#**#***#i
no ] 20 I =7,N
nEPU(I)=.125»(U(I+l )+UV( I+l )-U( I-1)-UV( I-l )

)

0Eru2( I ) = .5*(U( I+l )+UV( I+l )+U( I-l )+UV( I-l )-2.*U( I )-2.*U\/{ I ) )

DEFUDT( I )=UV( I )-U( I )

rONST 3X( I ) =.5» (R4-R3»0EEU( I ) )

CONST^X( I ) = .5*(R4+R3*DEEU{ I ) )

12 C0N5TX(I)=X(I)»(-E(I ) «DZ2T -R3*DEEU2 ( I ) +R4+R5*DEEUDT ( I ) *DZ2T ) -X (
I -

1

I ) *C0NST3X( I )-X( I-t-1 )*C0NST4X( I )

CONSTX(2)=CON5TX(2)-CONST3X(2)
FX(2)=-(E(2)»DZ2T+R4)
DX( 2)=C0NSTX( 2 )

no 121 1 = 3.

N

FX( I )=-(E( I )»DZ2T+RA) -CONST 3X( I ) CONS TAX ( I-1)/FX(I-1)
121 r)X( I )=CONSTX( I )-(DX( I-1)/FX( I-l) )*C0NST3X( I )

FX<N )=FX(N)+C0NST4X(N)
#»«*»#»*»»»«»#«»##»»»»CALCULATI0N OF XV»S ********************\

XV(N)=DX(N»/FX(N)
DO 122 I=2»NMIN1

12 2 XV(NPLUS1-I )=(DX(NPLUS1-I )-XV(N+2-I ) *C0NST4X { NPLUSl- I ) )/FX(NPLUSl-
II )

I)(NPLUS1)=UV(N)
X(NPLUS1 )=XV(N)
DO 130 I=2»N
IK I )=UV( 1 )

130 X( I )=XV( I

)

) »»»»»###*#**»»»»»#»»»»»#»»»#»Pr/CE[)URE; poR GETTING R FROM u»»»***»»****i
no 135 1 = 1.

N

135 R( I )=X( I

)

»»»»»»»»»*»»*»«*»»»»»*»»»CALCULATI0N OF T.UC.RC AND C************'
UPR=0.
no 140 1=2.

N

140 uPR=UPR+U( I

)

IIC=1.-{XNMIN1-UPR)»D1
CPR=0.
no 145 1=2.

N

145 rPR=CPR+X( I

)

r=l.-(XNMINl-CPR)*D2
XJ?=J2
T=XJ2*DELT

PRINT 3.T,UC.C
DO 160 I=1»N

160 PRINT 4, I .U( I ) »X( I )

»»#»*»«»###»»*«CHECK IF PROCESS IS EQUILIBRATED AND INCREMENT Jl AND.
J1=J2+1
J2=J1+INCR( JI

)

I F(UC-,98) 300.204.204
204 IF(C-.98)300»350»350
300 CONTINUE
350 GO TO 100
400 CONTINUE

END
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IV. CHEMICO-OSMOTIC EFFECTS IN THE OXNARD BASIN

A. INTRODUCTION

There are five aquifers interbedded by layers of fine-grained

sedimentary aquitard material in the geologic column beneath the

Oxnard plain in Ventura County, Calif onia. Seawater has intruded

several miles inland into the uppermost aquifer, the Oxnard

aquifer (see Chapter III of main report)

.

Computer analysis of conditions within the aquitard beneath the

Oxnard aquifer can help us draw some conclusions concerning two

problems of possible concern in the Oxnard Basin.

The first is the possibility of surface subsidence due to chemico-

osmotic consolidation of the aquitard between the Oxnard and Mugu

aquifers. The second is the possibility of aquifers deeper than the

Oxnard becoming contaminated with seawater.

The analyses presented herein assume a homogeneous aquitard layer.

In actuality the aquitard separating the Oxnard and Mugu aquifers is

poorly defined, as discussed in Chapter VI of the main report. Field

permeabilities are probably higher than those derived from laboratory

tests; whereas the field compressibility may be lower than determined

in the laboratory because of the presence of silted and sand lenses

in the field. The following analyses use the results of laboratory

measurements, so that the results of our analyses are biased as

discussed at the end of Section IV-C-3.
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Furthermore possible changes in aquitard properties as a result of

salt leaching have not been considered, although the test results

presented in Chapter VI of the main report indicate such effects are

small.

B. SURFACE SUBSIDENCE DUE TO CHEMICO-OSMOTIC CONSOLIDATION OF THE

AQUITARD

The aquitard between the Oxnard and Mugu aquifers can be thought of

as a layer of fine-grained material presently having fresh water as

pore water, and in contact with an aquifer (Oxnard aquifer) in which

the originally fresh pore water has been replaced by intruded seawater.

According to the concepts developed in Section III-D-1, we can expect

the solute (NaCl) concentration increase at a boundary of the aquitard

to induce a chemico-osmotic pressure drop at this boundary which tends

to "suck" water out of the aquitard. If there is significant chemico-

osmotic coupling in the aquitard soil-seawater system, we would expect

a compressible aquitard to undergo significant chemico-osmotic con-

solidation. Hence there is a possibility of a significant surface

subsidence.

To make an estimate of the amount of chemico-osmotic consolidation

to be expected in the aquitard, we need to have an estimate of the degree

of chemico-osmotic coupling inherent in the aquitard soil-seawater system.

This can only be done indirectly at this time, since direct testing of

the aquitard sediments for determination of the coupling coefficients

has not been possible.
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Olsen (22, 23) has made some direct measurements of chemico-osmotic

coupling in kaolinite-NaCl solution systems. By comparing data on the

properties of the aquitard soil with data on the properties of kaolinite

an attempt will be made to deduce the chemico-osmotic coupling character-

istics of the aquitard soil.

From Chapter VI of the main report on the properties of the aquitard

layers in the Oxnard area, we list the following data: The aquitard

seems to be about an average of 30 feet thick. The hydraulic permeability

of the aquitard soil varies between 10 and 10 cm/sec. The deposit

appears very inhomogeneous , consisting predominantly of lenses of clayey

silt interspersed with lenses of fine sand and silt. The cation exchange

capacity of the soil is between 20 and 40 milli-equivalents per 100 grams

of dry soil, and the clay content is generally less than 20% by weight,

with montmorillonite the predominant clay mineral. The sediment was found

to be moderately compressible, having an average compression index C , of

0.4. Consolidation tests revealed that the soil of the aquitard layer

was over consolidated, and the average maximum preconsolidation pressure

corresponds to a depth of between 100 feet and 200 feet.

Olsen (22, 23) determined the hydraulic permeability of the kaolinite

he tested to be about 10 cm/sec at an overburden pressure corresponding

to a depth of 150 feet. This is at the lower end of the range of

permeabilities (10 to 10 cm/sec) measured for the aquitard soil,

and suggests that the kaolinite contains a higher percentage of fine-

grained material than the aquitard soil. Most values of cation exchange
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capacity in kaolinite, reported in the literature vary between 3 and 15

milli-equivalents per 100 grams of soil (7). This range is significantly

lower than the range measured for the aquitard soil. Hence we conclude

that even though the kaolinite contains a higher percentage of fine-

grained material, the fine-grained fraction of the aquitard soil is

probably far more active than kaolinite. The fact that the predominant

clay mineral in the clay fraction of the aquitard soil is montmorillonite

tends to lend support to this conclusion because montmorillonite is far

more active than kaolinite (7)

.

We now make the assumption that cation exchange capacity, size of

clay fraction and activity of a soil are crude indicators of the degree

of chemico-osmotic coupling between that soil and a NaCl solution . On

the basis of this assumption we conclude that as a first approximation

the aquitard soil-seawater system and Olsen's kaolinite-NaCl solution

system experience the same degree of chemico-osmotic coupling.

The present NaCl concentration within the aquitard soil was measured

to be about .03 (see Table VI-6 of main report), and we assume that

the NaCl concentration in the Oxnard aquifer prior to seawater invasion

was also about 0.03 normal. The normality of NaCl in seawater is 0.6

so that the increase of NaCl concentration at the boundary of the

.^j. , ^0.6N „^aquitard is a factor of „„ „ = 20.
.03 N

At an overburden pressure corresponding to a depth of 150 feet

,

Olsen measured a chemico-osmotically induced pore pressure drop of

0.7 inches of water for a tenfold increase in external NaCl concentration.
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(23) , Olsen also showed empirically that the chemico-osmotically

induced pore pressure drop is proportional to the natural logarithm

of the increase in external NaCl concentration. Since log 20/log 10

= 1.3, the chemico-osmotically induced drop in pore pressure for a

twenty-fold increase in external NaCl concentration would be

0.7 X 1.3 = 1 inch of water

Hence we assume the chemico-osmotically induced drop in pore water

pressure in the aquitard to be equivalent to 1 inch of water.

To calculate the corresponding amount of chemico-osmotic consolidation

we assume:

1. The aquitard is a layer 30 feet thick

2. The chemico-osmotic pore pressure drop of 1 inch of water

(= .04 psi) corresponds to an increase in effective stress Aa' of

the same value acting over the whole aquitard.

3. The average coefficient of compressibility of the aquitard

layer, a^ can be derived from the average compression index via the

equation (3l)

.435 C„
a = (IV-1)
V a'

where we take a' to be the average maximum effective preconsolidation

pressure of about 75 psi and C^, = 0.4.
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Then

435 X 0.4
- = .002^ = 75

4. The amount of chemico- osmotic consolidation of the layer is given

by (27)

AH = a Aa' H
V

= .002 X .04 X 30

'~ .002 feet

This value represents a negligible amount of consolidation.

It should be noted that we employed a value of a^ which was derived

from an average value of C^ taken from the virgin portion of the e-log

a' curves rather than the recompression portion. This means that we

have employed a value of a^ which is actually too high, because chemico-

osmotic consolidation in the field would proceed along the recompression

curve, since the actual aquitard soil is over consolidated. This means

our estimate of AH is too high.

Hence we are safe in concluding that chemico-osmotic consolidation

in the aquitard between the Oxnard and Mugu aquifers at Oxnard would

only be significant if chemico-osmotic coupling and compressibility

of the soil were both much greater than they actually appear to be.
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C. POSSIBILITY OF DEEPER AQUIFERS BECOMING CONTAMINATED

There are two routes that seawater can take to reach aquifers lower

than the Oxnard. The first is lateral invasion from the sea, as happened

in the Oxnard aquifer. Since chemico-osmotic coupling is very low in

aquifers, our theory provides no information on this process which

cannot be deduced from ordinary hydraulic diffusion theory.

The second route is by one-dimensional downward diffusion of NaCl

through the aquitard; the driving forces being the solute (NaCl)

concentration drop across the aquitard and the hydraulic pressure drop

which develops across the aquitard if there is pumping from the Mugu.

As we deduced in Section III-D-1, there should be a fair amount of

chemico-osmotic coupling in the Oxnard soil-NaCl system, so that

ordinary solute diffusion theory is inadequate for describing the

process. Hence we used our theory, which includes osmotic effects,

to conduct a quantitative theoretical analysis of the process,

and the results are presented in Figs. IV-1 to IV-8.

The problem solved was that of the one-dimensional diffusion of

NaCl and water through a 30 foot thick aquitard under various boundary

conditions. In all cases the initial conditions were a .03 normal

NaCl concentration, and zero excess hydrostatic pressure throughout

the aquitard and aquifers.

In mathematical terms for t =

c = .03 normal

U =0 feet of water

> « z < 30 feet
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A slightly modified version of the program which solves the explicit form

of the finite difference equations, (c.f. III-B-2) with 3 = 0.36 and the

number of Z intervals equal to 12, was used for analysis of conditions

within the aquitard.

Two different cases were considered. The first was that of no

pumping from either aquifer. The second was that of pumping from the

Mugu aquifer, the Oxnard having presumably been abandoned after its

contamination by seawater. These two cases correspond to different

boundary conditions, and different R-coeff icients, and will therefore

be discussed separately.

1. No Pumping

In the case of no pumping from either aquifer the boundary

conditions are for t ^ 0.

Cg = 0.6 normal z =

Cg = 0.03 normal z = 30 feet

U = feet of water z = and 30 feet

i.e., there is invasion of seawater in the Oxnard aquifer which causes

the NaCl concentration at the upper boundary (z = 0) of the aquitard to

increase from .03 to 0.6 normal, thus initiating the diffusion process.

The aquitard material was assumed to have the same chemico-osmotic

properties as the kaolinite which Olsen tested at low overburden

pressure (23), and the R-coefficients used were those calculated

in Section III-B- 5 using Olsen 's data
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R] = 1.0

R2 = - 0.6

R3 = .001

R, = .001
4

,001

It is feasible to expect that the seawater diffusing in

laterally along the Oxnard aquifer from the coastline might undergo

a reduction in salt concentration as it moves inland and mixes with

fresh water it encounters. If this were to happen, it would change

the boundary conditions of our problem somewhat; and consequently it

might change the nature of the ensuing diffusion. To investigate

this possibility, an additional analysis was conducted assuming that

the NaCl concentration in the Oxnard aquifer was 0.3 normal, i.e.,

half that of seawater.

To gain a feel for the influence of leakiness the aquitard

soil, the case of 0.6 N NaCl concentration at the upper boundary was

analyzed for a non-leaky soil (R-^ = 1.0, R2 = 0.6, R = 0,0, R, = 0.0

and R5 = .001) and a perfectly leaky soil (R-, = 1.0, R2 = 0.0, R^ =

.001, R4 = .001, R5 = .001).

The results of these analyses are presented in Figs IV-1

to IV-5.
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The results of the analysis for a non-leaky aquitard are shown

in Figs. IV-1 and IV-2. Fig. IV-2 shows that there is no solute inflow.

This is to be expected if the aquitard is non-leaky, and implies that no

contamination of the aquitard or Mugu aquifer would occur. Fig. IV-1

depicts the chemico-osmotic consolidation which would result if the

aquitard were non-leaky, and Fig. IV-3 contains the corresponding pore

pressure drop isochrones. The pore pressure drop isochrones, although

the result of chemico-osmotic diffusion, are identical to those that

would result if the process was an ordinary hydraulic diffusion process

started by a pore pressure drop of 1 inch of water at the top surface

of the aquitard. In other words the process is the same as an ordinary

hydraulic diffusion process except that the driving force is chemical

rather than physical in the form of an applied pressure to the

water.

There is no salt flow in a non-leaky aquitard because solute

cannot move or diffuse in response to drag coupling or "void ratio

coupling"; consequently no solute concentration gradient can arise

to cause solution to move due to chemico-osmotic coupling.

Solute inflow is defined in Section III-B-2. Note also that initially

the solute inflow is 17% not 0%. This is because there is initially a

NaCl concentration of .03 normal in the aquitard, not normal. In

addition there is an inaccuracy inherent in the finite difference

approximation method which causes initial values of solute inflow

to be overestimated.
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Fig. IV-1 indicates that the chemico-osmotic consolidation in

the aquitard would reach a maximum value of .001 feet in about 25 years.

This amount is half of the value estimated in the previous section. The

reason for this is that the equilibrium pore pressure drop isochrone in

Fig. IV-3 varies linearly from .001 inches of water at the top of the

aquitard to zero at the bottom of the aquitard. Hence the average

decrease in effective stress at equilibrium is 0.5 inches of water

(.02 psi) rather than 1 inch of water (.04 psi) as assumed in the

previous section.

Figs. IV-1 to IV-5 present the results of the analyses for the

actual aquitard soil. The curves in Fig. IV-1 show that the chemico-

osmotic consolidation increases to a maximum in about 25 years, after

which rebound occurs. Physically the NaCl solute concentration increase

at the boundary chemico-osmotically sucks water from the aquitard, and

causes consolidation until* "equilibrium" is reached after about 25 years.

After 25 years the diffusion of NaCl into the aquitard begins to become

significant, and it chemico-osmotically sucks water back into the

aquitard, causing the aquitard to swell. Final equilibrium is attained

after about 7000 years when the rate of NaCl diffusion into the aquitard

reaches a steady-state.

Note that the chemico-osmotic consolidation curves in Fig. IV-1 have

been drawn assuming that the coefficient of compressibility is the same

for both consolidation and swell. Consequently the chemico-osmotic

consolidation is zero at equilibrium (i.e., after about 5000 years).

However, (as discussed in Section III-C-1) real soils exhibit a lower
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coefficient of compressibility for swelling than consolidation. In

other words real soils will swell or rebound less than they consolidate

under the same change in pore pressure. Our analyses of chemico-osmotic

consolidation in the aquitard have not incorporated this aspect of

real soil behavior. If they did, the result would be that the curves

in Fig. IV-1 for the aquitard soil would consolidate to .001 feet in

about 25 years, and thence rebound to an amount less then .001 feet

in about 5000 years. In other words the aquitard will chemico-osmotically

consolidate for about 25 years and then swell to an equilibrium thickness

less than the original thickness.

The maximum amount of chemico-osmotic consolidation is slightly

less for an upper boundary NaCl concentration of 0.3 normal than for

0.6 normal. In both cases the maximum amount of chemico-osmotic con-

solidation induced is insignificant.

There is no chemico-osmotic consolidation if there is no chemico-

osmotic coupling. Analysis confirms this belief as can be seen in

Fig. IV-1.

Fig. IV-2 shows that the rate of NaCl inflow is slightly higher

in the actual aquitard than it would be in a perfectly leaky aquitard

subject to the same boundary conditions. To understand this requires

a discussion of the actual physical mechanisms comprising the chemico-

osmotic diffusion at Oxnard

:

a. The increase of NaCl concentration at the upper surface of

the aquitard induces a chemico-osmotic pressure drop just beneath the

upper surface of the aquitard.

-547-



b. This drop in pore water pressure at the surface causes water

within the aquitard to diffuse upward and out of the aquitard. Consequently

the pressure isochrones in Fig. IV-4 show the pore pressure dropping in

the aquitard and the corresponding chemico-osmotic consolidation in Fig.

IV-1 shows consolidation increasing with time up to about 25 years.

c. The NaCl concentration isochrones in Fig. IV-4 show that

NaCl starts slowly diffusing into the aquitard at the start of the process.

Because of this there is a chemico-osmotic reduction in pore pressure drop

near the upper boundary of the aquitard as indicated by the isochrones in

Fig. IV-3. As time passes the rate of flow of NaCl into the aquitard

increases so that the pore pressure drop near the upper boundary of the

aquitard decreases further. This is the reason why the 27th year pore

pressure drop isochrone in Fig. IV-4 drops to zero at the upper boundary

of the aquitard, while the corresponding isochrone in Fig. IV-3 (for a

non-leaky aquitard) shows no such drop.

d. The result of the reduction in pore pressure drop at the

upper boundary of the aquitard is that a counter hydraulic pressure

gradient is created which causes seawater to diffuse into the aquitard.

In an aquitard where there was no chemico-osmotic coupling (i.e., in a

perfectly leaky aquitard) this effect would not occur. The result of

this chemico-osmotically induced inflow of seawater therefore is to

speed up the rate of inflow of NaCl above that occurring in a perfectly

leaky aquitard. Fig. IV-2 shows that there is not much difference

between the rate of solute inflow in the actual aquitard and rate of

solute inflow in a perfectly leaky aquitard. In other words the rate
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of contamination of the aquifer is almost the same as if the aquifer

were perfectly leaky,

e. As the process proceeds, more NaCl diffuses into the aquitard,

and chemico-osmotically causes more seawater to diffuse in. This inflow

of NaCl and seawater which both contaminate the aquitard, becomes notice-

able after about 25 years (see Fig. IV-2) , eventually equilibrates after

about 7000 years. Fig. IV-2 shows that the curve of degree of inflow of

NaCl into the aquitard is the same for upper boundary NaCl concentrations

of both 0.3 and 0.6 normal. From a practical point of view this implies

that there is twice as much NaCl contaminating the aquifer if the upper

boundary NaCl concentration is 0.6 normal than there is if the upper

boundary NaCl concentration is 0.3 normal.

The NaCl concentration isochrones in Fig. IV-4 indicate that

as the diffusion proceeds, a NaCl concentration gradient builds up at

the bottom surface of the aquitard. This gradient induces a downward

diffusional flow of NaCl into the Mugu aquifer. Consequently the Mugu

begins to become contaminated. The downward diffusional flow of NaCl

has been calculated assuming a diffusion constant of lO"-' cm^/sec in

the aquitard, and is plotted in Fig. IV-5 for an upper boundary NaCl

concentration of 0.6 normal. For a non-leaky aquitard the flow rate

would be zero. For a perfectly leaky aquitard the flow rate would be

slightly less than for the real aquitard. The reason is the same as

the reason for the NaCl inflow rate being slightly less in a perfectly

leaky aquitard. For an upper boundary NaCl concentration of 0.3 normal,

the flow rate would be half that shown in Fig. IV-5. Fig. IV-5 shows
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that contamination of the Mugu aquifer begins after about 800 years

and reaches its maximum rate after about 7000 years.

The whole process reaches equilibrium after about 7000

years, at which point there is no excess pore pressure gradient

across the aquitard, but there is a finite and uniform NaCl concen-

tration gradient across the aquitard. This NaCl concentration gradient

causes a downward flow of NaCl into the Mugu aquifer (as shown in Fig.

IV-5) and an upward flow of water into the Oxnard aquifer. Using

equation II-17a we calculate that this upward flow of water is about

10"-" gallons/day/f oot^.

2. Pumping from the Mugu Aquifer

The second case analyzed was that of seawater invasion in the

Oxnard aquifer and pumping of fresh water out from the Mugu aquifer.

The boundary conditions are for t ^

c =0.6 normal z =
s

c =0.03 normal z = 30 ft
s

U = ft of water z = ft

U = - 10 ft of water z = 30 ft

i.e., we are assuming that the drawdown due to pumping is 10 feet of

water. This drawdown is considerably greater than the chemico-osmotic

pressure drop (1 inch of water) obtained in the previous case. The
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R-coef ficients, R2 , Rt. and R5 contain the factor Uju^x (c-f- equations

III-l) , which is a measure of the maximum pressure drop occurring during

the diffusion process. U^gx ^^ larger by the ratio 10 feet of water/1 inch

of water for the case of pumping from the Mugu. To achieve the degree

of accuracy required in this analysis we can take this ratio as 100. R^

is inversely proportional to U and is therefore divided by this
' ^ ^ max

ratio to become - 0.6/100 = - .006. R3 and R^ are directly proportional

to U , and are therefore multiplied by this ratio. They were both
max' '^ '

equal to .001 in the previous and hence become .001 x 100 = 0.1 in this

case. Thus the R-coeff icients used in this case are

R-^ = 1.0

Ro = -.006

R3 = 0.1

R, = 0.001
4

R. = 0.1

To provide additional information, analysis was also made for

drawdowns of 5 and 10 feet of water. The results of these two analyses

are depicted in Figs. IV-6 to IV-8. Several comments seem relevant.

a. Fig. IV-6 shows that consolidation occurs for about 25 years
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at which time it reaches, and thenceforth remains at a maxumum value.

For drawdowns of 5 and 10 feet, the maximum consolidations are about

0.05 and 0.1 feet respectively. These consolidations are relatively

small, but are about one hundred times as great as the chemico-

osmotic consolidation discussed earlier. Indeed chemico-osmotic

consolidation does occur in this case, and at the same rate as the

consolidation due to pumping (see Section III-C-1) . However chemico-

osmotic consolidation constitutes only about one hundredth of the

consolidation shown in Fig. IV-6, so that chemico-osmotic pressure

reduction is an infintesimal fraction of the pressure drop shown in

Fig. IV-8. In fact analyses conducted for a "perfectly leaky"

aquitard and a non-leaky aquitard resulted in exactly the same

consolidation curves as those in Fig. IV-6. Indicating again that

for this sediment chemico-osmotic consolidation should be negligible

compared to consolidation due to pumping from the Mugu aquifer.

b. The equilibrium pressure drop isochrone in Fig. IV-8,

which is for a drawdown of 10 feet in the Mugu, represents a downward

flow rate of water of about 10"^ gallons/day/foot^ (10~^ cm/sec).

This is in the opposite direction to, and far larger than the chemico-

osmotically induced upward flow of about 10"^ gallons/day/foot

generated in the previous case.

c. The equilibrium NaCl concentration isochrone in Fig. IV-8

(5400 years) is significantly different from that in Fig IV-4 (7100

years). To explain this discrepancy we consider the flow of NaCl at

equilibrium. There are two components of NaCl flow. The first
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is diffusion under a NaCl concentration gradient, and the second is flow

due to drag coupling. According to the law of conservation of mass these

two components have to add up to the same value at every point in the

aquitard at equilibrium, i.e., there is no storage or creation of NaCl

within the aquitard after equilibrium is reached.

At equilibrium there is a constant downward flow of water of

10"^ gallons/day/foot^ at all points in the aquitard. Hence the

component of downward flow of NaCl due to drag coupling is proportional

only to NaCl concentration in the aquitard. The NaCl concentration is

high at the upper surface of the aquitard (0.6 normal) and much smaller

at the lower surface (.03 normal). Therefore the component of downward

flow of NaCl due to drag coupling is high near the top surface of the

aquitard, and much smaller near the lower surface. This in turn implies

that the component of downward NaCl flow due to diffusion under the

NaCl concentration gradient is low near the top surface and much higher

near the bottom surface of the aquitard (because the total downward

flow of NaCl is a constant after equilibrium is reached) . And con-

sequently the NaCl concentration gradients should be low near the

bottom surface of the aquitard.

Hence the equilibrium NaCl concentration isochrone in Fig. IV-8

should be concave upward and not linear like that in Fig. IV-4.

From a physical point of view: The downward flow of water due

to pumping drags NaCl downward and increases the NaCl concentration in

the aquitard above that in the case of no pumping.

The equilibrium NaCl concentration isochrone in Fig. IV-4

-555-



is linear because there is no drag coupling, since the pore water pressure

gradient is zero at equilibrium in the case of no pumping from the Mugu.

d. This downward flow of NaCl due to drag coupling increases the

rate of diffusional flow of NaCl into, and hence the rate of contamination

of, the aquitard. This can be seen by comparing Fig. IV-2 and Fig. IV-7.

The effect is slightly more pronounced for a drawdown of 10 feet than for

a drawdown of 5 feet , the reason being that a higher pumping head causes

a greater downward flow of solution and hence a higher downward flow of

NaCl by drag coupling. From Fig. IV-7 we observe that contamination of

the aquitard begins to be noticeable after about 25 years, and reaches

a maximum after about 5000 years if the drawdown is 10 feet.

e. Fig. IV-5 shows that the rate of contamination of the Mugu

aquifer is also speeded up by pumping from the Mugu. Here again it is

the downward flow of NaCl by drag coupling which is responsible for

the effect. The effect increases as the drawdown increases. Fig. IV-5

shows that the contamination of the Mugu commences after about 250 years

and reaches its maximum rate after about 5000 years if the drawdown is

10 feet.

Analysis of the case of pumping from the Mugu for drawdowns

of both 5 feet and 10 feet, assuming a perfectly leaky aquitard, yielded

solute inflow curves exactly the same as those in Fig. IV-7, and NaCl

concentration isochrones exactly the same as" those in Fig. IV-8. Hence

The curve for a drawdown of 5 feet is omitted from Fig. IV-5 in
order not to clutter the diagram.
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the rate of contamination of the aquitard and the Mugu aquifer is exactly

the same as if the aquitard was perfectly leaky. If, on the other hand,

the aquitard was non-leaky, there would be no contamination of either

the aquitard (c.f . Fig. IV-7) or the Mugu.

3. Summary

In summary we note that for the aquitard between the Oxnard

and Mugu aquifers:

a. The maximum amount of chemico-osmotic consolidation is about

.001 feet which is negligibly small. The amount of consolidation induced

by pumping from the Mugu aquifer is about .1 foot. Both cases reach 100%

consolidation in about 250 years.

b. The rate of inflow of NaCl into, or rate of contamination

of the aquitard is almost the same as if the aquitard were perfectly

leaky, and is increased by pumping from the Mugu aquifer. If there

is no pumping from the Mugu aquifer, contamination starts to become

significant after about 25 years and reaches its maximum in about 7000

years. If there is a drawdown of 10 feet in the Mugu, contamination

starts to be significant after about 25 years and reaches a maximum

in about 5000 years.

c. The rate of inflow of NaCl into, or rate of contamination

of the Mugu is almost the same as if the aquitard were perfectly leaky,

and is Increased by pumping from the Mugu. If there is no pumping from

the Mugu, contamination begins after about 800 years, and reaches its

maximum rate in about 7000 years. If there is a drawdown of 10 feet
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in the Mugu, the contamination begins after about 250 years and reaches

its maximum rate in about 5000 years.

d. The rate of contamination of the aquitard is proportional

to the NaCl concentration in the Oxnard aquifer. (Figs. IV-2 and IV-7

are plotted in terms of percentage of NaCl inflow rather than the

actual amount of inflow.) Similarly the rate of contamination of

the Mugu aquifer is proportional to the NaCl concentration in the

Oxnard aquifer. The reason for this is that the flow of NaCl into

the Mugu is almost totally due to diffusion, and diffusional flow is

proportional to the NaCl concentration gradient, which in this case

is proportional to the NaCl concentration in the Oxnard aquifer.

e. If there is no pumping, there is a chemico-osmotically

induced upward flow of water in the aquitard, which builds up to a

very small value of about 10"^ gallons/day/f oot^ in about 7000 years.

If there is a drawdown of 10 feet in the Mugu, there is a downward

flow of water in the aquitard which builds up to a maximum value of

10 ^ gallons/day/foot in about 25 years.

f. We observe that from a practical point of view there is

no chemico-osmotic effect of any significance in the aquitards at

Oxnard. The aquitards can be regarded as perfectly leaky membranes

i.e., non semi-permeable.

g. As mentioned previously our analyses employ laboratory

measurements of hydraulic permeability and coefficient of consolidation

which are lower than those measured in the field. Consequently field

consolidation, both chemico-osmotic, and that due to pumping from the
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Mugu, will occur more rapidly than estimated in our analyses. Another

effect is that chemico-osmotic coupling is reduced (because R2 is

inversely proportional to hydraulic permeability) , so that there will

be less chemico-osmotic consolidation than estimated- In addition the

aquitard is not a homogeneous deposit of clay. Rather it is poorly

defined, with many silt and sand lenses between clay lenses. The silt

and sand lenses are less compressible than the clay tested in the laboratory.

This tends to make our estimates of amount of consolidation, both chemico-

osmotic, and that due to pumping from the Mugu, too large. It also reduces

flow of NaCl by drag coupling because the drag coupling coefficient, R

is directly proportional to the coefficient of compressibility, a^ (see

equation III-l) . Consequently our analyses predict too rapid a flow of

NaCl into or contamination of the aquitard and the Mugu aquifer,

D. PRACTICAL IMPLICATIONS OF THE ANALYSIS

From a practical point of view the most significant results of the

analysis are:

1. Chemico-osmotic effects can be neglected at the Oxnard site.

2. For both cases analyzed there should be no significant con-

tamination of the aquitard for about 25 years. Contamination of the

aquitard reaches a maximum in about 7000 years if there is no pumping

from the Mugu aquifer, and in a considerably shorter time if there is

pumping from the Mugu.

3. Contamination of the Mugu takes slightly longer, beginning

after about 800 years and reaching its maximum rate in abouc 7000
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years. Pumping from the Mugu speeds up this contamination rather

significantly.

4. Due to the fact that we employed laboratory measured parameters

which are different from field measurements, our analyses overestimate

the amount of consolidation. They also estimate too slow a rate of

consolidation and too high a rate of contamination of the aquitard

and the Mugu aquifer.

Furthermore the above analyses take no account of possible transfer

of salt by direct communication through fissures, sand and silt lenses

etc. in the aquitard.

The effects of NaCl leaching on the physical properties of the

sediment have not been considered. As discussed in Chapter VI of the

main report, measurements have shown that these effects are negligible.

It should also be mentioned that these results make no claim to

generality. For example the deeper aquitards might exhibit a far higher

degree of chemico-osmotic coupling and hence act as more efficient

barriers between aquifers. If the solute were a radioactive waste or

some other form of disposed chemical, the amount and consequences of

chemico-osmotic coupling could also be quite different.

Each site has its own peculiarities, chemico-osmotic characteristics

and boundary conditions. These should be treated on their own merits

until we have greater experience with their relative effects.
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V. SUMMARY. CONCLUSIONS, AND RECOMMENDATIONS

The objectives of this report were to investigate the nature and

significance of chemico-osmotic effects in fine-grained soils.

A review of the literature revealed that there is likely to be a

small but finite osmotic effect in most fine grained soils. This

chemico-osmotic (or osmotic) effect manifests as a coupling between

the flows of solvent and solute in the pores of a soil. The magnitude

of this effect should increase as void ratio decreases, size of clay

fraction increases and molecular weight of solute increases.

A theory describing the simultaneous flow of solute and solvent

under the action of solute concentration and hydrostatic pressure

gradients in soils was presented. The theory consists of two second

order simultaneous differential equations, solution to which enables

one to express solute concentration and pore water pressure as functions

of time and position in the soil mass considered. The differential

equations were developed by applying the principles of irreversible

thermodynamics and the law of conservation of mass to an open, continuous

system of one solute and solvent in the pores of a compressible medium.

The following assumptions were made:

(1) Isotropy and homogeneity

(2) Isothermal conditions

(3) No electrical or electro magnetic gradients

(4) No ion exchange during diffusion

(5) The solute acts as a single species
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(6) The solution is dilute enough for "ideal solution" relationships

to be valid and for the flow of solvent and solution to be considered

synonymous

(7) The pores of the medium are fully saturated

(8) The postulates of irreversible thermodynamics are applicable

to the process.

The theory was tested against available data and it was found that

the specialized one dimensional form of the diffusion equations

2

M = 9^U
,

1 + e ^ ^s

3t % . 2 a he 9 2 (V-la)
dy V y

and

^S 1 + e - '
-- ^^^

9t Y ch 8yw ' ^f)^ (l^^>°'^-\%lf (^-1^)

where U = hydrostatic pressure

c = solute concentration
s

t = time

c = coefficient of consolidation

y = linear distance variable

e = void ratio

a = coefficient of compressibility

^c' ^
h

~ coupling coefficients

Y = specific weight of waterw

X = dimensionless solute concentration

D' = D + c k^
s he

and D = diffusion coefficient
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include the Terzaghi diffusion equation and the solute diffusion

equation (Pick's Law) as limiting cases. The theory is consistent

with van't Hoff's Law, and also provides a framework for analyzing

and interpreting previous experimental work by Olsen (22,23) on the

simultaneous flow of salt and water in soils.

Consideration was given to the physical significance of the

phenomenological coefficients appearing in the diffusion equations.

It was shown that there are three types of coupling between the flow

of solute and solvent in a soil: Chemico-osmotic coupling, which is

a coupling between solute concentration gradient and flow of solvent;

drag coupling which is a coupling between hydrostatic pressure gradient

and flow of solute; and void ratio coupling which is a coupling between

void ratio change and flow of solute. Chemico-osmotic coupling increases

and drag coupling decreases as void ratio decreases, size of clay fraction

increases and molecular weight of solute increases. Drag coupling and

void ratio coupling increase as soil compressibility increases.

The theory was used as a basis for a computer investigation of the

one dimensional diffusional flow of solute and solvent in a soil sample

subjected to a sudden boundary solute concentration increase. Equations

V-1 were written in finite difference form and used to calculate solute

concentration isochrones, pore pressure isochrones and the resulting

consolidation (chemico-osmotic consolidation) in the soil sample. The

analyses included consideration of different initial and boundary solute

concentrations, and hydrostatic pressures, as well as different degrees

of chemico-osmotic, drag and void ratio coupling. There are very little

data available on the coupling coefficients (see Equations V-1). Ranges
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of values for use in the theoretical analysis were deduced from the

available data and also computed using reasonable assumed values for

the other soil properties.

The results of the analysis indicate that:

(1) Solute inflow into the sample is a smooth process building

steadily to equilibrium.

(2) Chemico-osmotie consolidation builds rapidly and smoothly to

a maximum followed by rebound to an equilibrium thickness less than

the original sample thickness.

(3) Chemico-osmotie consolidation reaches a maximum value at a

time t given by

t^=2.0|- V-2
V

i.e., t depends only on the drainage path length H and the coefficient

of consolidation c .

V

(5) Chemico-osmotically induced consolidation reaches a maximum

value long before solute inflow into the sample becomes significant.

(5) The maximum amount of chemico-osmotie consolidation increases

with increase in boundary solute concentration, increase in chemico-

osmotie coupling and increase in soil compressibility.

(6) The magnitude of the chemico-osmotie effect increases with

increase in drag coupling and chemico-osmotie coupling, but is not

effected noticeably by change in void ratio coupling.

(7) The time taken for the process to attain equilibrium increases

as drag coupling and diffusion constant decrease, and is not effected

by change in void ratio coupling.
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The theory was used in finite difference form to conduct computer

analyses of the coupled flows of NaCl and water in a horizontal fine-

grained aquitard at a site in Oxnard, California. The flows were induced

by the lateral invasion of sea water in a contacting aquifer above the

aquitard. Data on site conditions, including a physical description

of the profile, and soil and pore fluid properties were taken from

Chapter VI of the main report. Numerical values for the coupling

coefficients (see equation V-1) were estimated from a comparison of

the aquitard soil properties and the properties of a kaolinite for

which Olsen measured coupling coefficients (22 23) . The purpose of

the investigation was to determine the relative effects of chemico-

osmotic coupling and pumping drawdown in the aquifer beneath the aquitard

on surface subsidence and rate of NaCl contamination of the aquitard and

aquifer beneath the aquitard.

The results of the analyses indicated:

(1) Chemico-osmotic coupling is likely to cause only minor surface

subsidence (.001 ft) and does cause the aquitard to become contaminated

slightly more rapidly than if there was no chemico-osmotic coupling.

However, both effects are negligibly small, and from a practical point

of view it is adequate to neglect chemico-osmotic coupling at the Oxnard

site.

(2) Assuming no fissures and no significant property changes

with time in the aquitard clay, and no pumping from the aquifer below

the aquitard, NaCl contamination of the aquitard should be negligible

for about 25 years. After this time contamination becomes significant

reaching a maximum in about 7000 years. Contamination of the aquifer
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below the aquitard begins after about 800 years and reaches its maximum

rate of contamination in about 7000 years.

(3) Pumping of water from the aquifer below the aquitard increases

both surface subsidence and rates of contamination of aquitard and

aquifer below the aquitard. A drawdown of 10 feet of water may cause

a surface subsidence of 0.1 feet. Contamination of the aquitard becomes

significant after about 25 years and reaches a maximum in about 7000

years. Contamination of the aquifer below the aquitard begins after

about 250 years and reaches a maximum in about 5000 years.

(4) Both chemico-osmotic surface subsidence and surface subsidence

due to pumping from the aquifer below the aquitard reach maxima in

about 25 years.
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